These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 23509279)

  • 21. Allosteric control of a DNA-hydrolyzing deoxyribozyme with short oligonucleotides and its application in DNA logic gates.
    Furukawa K; Minakawa N
    Org Biomol Chem; 2014 Jun; 12(21):3344-8. PubMed ID: 24740418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphoserine Lyase Deoxyribozymes: DNA-Catalyzed Formation of Dehydroalanine Residues in Peptides.
    Chandrasekar J; Wylder AC; Silverman SK
    J Am Chem Soc; 2015 Aug; 137(30):9575-8. PubMed ID: 26200899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Demonstration of separate phosphotyrosyl- and phosphoseryl- histone phosphatase activities in the plasma membranes of a human astrocytoma.
    Leis JF; Knowles AF; Kaplan NO
    Arch Biochem Biophys; 1985 Jun; 239(2):320-6. PubMed ID: 2408568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The rate of hydrolysis of phosphomonoester dianions and the exceptional catalytic proficiencies of protein and inositol phosphatases.
    Lad C; Williams NH; Wolfenden R
    Proc Natl Acad Sci U S A; 2003 May; 100(10):5607-10. PubMed ID: 12721374
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional studies of dual-specificity phosphatases.
    Sun H
    Methods Mol Biol; 1998; 84():307-18. PubMed ID: 9666459
    [No Abstract]   [Full Text] [Related]  

  • 26. Isolation and characterization of two 3-phosphatases that hydrolyze both phosphatidylinositol 3-phosphate and inositol 1,3-bisphosphate.
    Caldwell KK; Lips DL; Bansal VS; Majerus PW
    J Biol Chem; 1991 Sep; 266(27):18378-86. PubMed ID: 1655747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tracing sequence diversity change of RNA-cleaving deoxyribozymes under increasing selection pressure during in vitro selection.
    Schlosser K; Li Y
    Biochemistry; 2004 Aug; 43(30):9695-707. PubMed ID: 15274624
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into the catalytic mechanism of human sEH phosphatase by site-directed mutagenesis and LC-MS/MS analysis.
    Cronin A; Homburg S; Dürk H; Richter I; Adamska M; Frère F; Arand M
    J Mol Biol; 2008 Nov; 383(3):627-40. PubMed ID: 18775727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dephosphorylation of phosphopeptides by calcineurin (protein phosphatase 2B).
    Donella-Deana A; Krinks MH; Ruzzene M; Klee C; Pinna LA
    Eur J Biochem; 1994 Jan; 219(1-2):109-17. PubMed ID: 7508382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanistic studies of phosphoserine phosphatase, an enzyme related to P-type ATPases.
    Collet JF; Stroobant V; Van Schaftingen E
    J Biol Chem; 1999 Nov; 274(48):33985-90. PubMed ID: 10567362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Establishing broad generality of DNA catalysts for site-specific hydrolysis of single-stranded DNA.
    Xiao Y; Wehrmann RJ; Ibrahim NA; Silverman SK
    Nucleic Acids Res; 2012 Feb; 40(4):1778-86. PubMed ID: 22021383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic DNA: Scope, Applications, and Biochemistry of Deoxyribozymes.
    Silverman SK
    Trends Biochem Sci; 2016 Jul; 41(7):595-609. PubMed ID: 27236301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selection of deoxyribozyme ligases that catalyze the formation of an unnatural internucleotide linkage.
    Levy M; Ellington AD
    Bioorg Med Chem; 2001 Oct; 9(10):2581-7. PubMed ID: 11557346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro selection of metal ion-selective DNAzymes.
    Ihms HE; Lu Y
    Methods Mol Biol; 2012; 848():297-316. PubMed ID: 22315076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved deoxyribozymes for synthesis of covalently branched DNA and RNA.
    Lee CS; Mui TP; Silverman SK
    Nucleic Acids Res; 2011 Jan; 39(1):269-79. PubMed ID: 20739352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional compromises among pH tolerance, site specificity, and sequence tolerance for a DNA-hydrolyzing deoxyribozyme.
    Xiao Y; Chandra M; Silverman SK
    Biochemistry; 2010 Nov; 49(44):9630-7. PubMed ID: 20923239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of Acid phosphatases.
    Araujo CL; Vihko PT
    Methods Mol Biol; 2013; 1053():155-66. PubMed ID: 23860654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Factors that contribute to efficient catalytic activity of a small Ca2+-dependent deoxyribozyme in relation to its RNA cleavage function.
    Okumoto Y; Tanabe Y; Sugimoto N
    Biochemistry; 2003 Feb; 42(7):2158-65. PubMed ID: 12590605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cdc14 phosphatases preferentially dephosphorylate a subset of cyclin-dependent kinase (Cdk) sites containing phosphoserine.
    Bremmer SC; Hall H; Martinez JS; Eissler CL; Hinrichsen TH; Rossie S; Parker LL; Hall MC; Charbonneau H
    J Biol Chem; 2012 Jan; 287(3):1662-9. PubMed ID: 22117071
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Specificity profiling of protein phosphatases toward phosphoseryl and phosphothreonyl peptides.
    Xiao Q; Luechapanichkul R; Zhai Y; Pei D
    J Am Chem Soc; 2013 Jul; 135(26):9760-7. PubMed ID: 23758517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.