These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23509447)

  • 1. Single directional SMO algorithm for least squares support vector machines.
    Shao X; Wu K; Liao B
    Comput Intell Neurosci; 2013; 2013():968438. PubMed ID: 23509447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SMO-based pruning methods for sparse least squares support vector machines.
    Zeng X; Chen XW
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1541-6. PubMed ID: 16342494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rigorous proof of termination of SMO algorithm for support vector machines.
    Takahashi N; Nishi T
    IEEE Trans Neural Netw; 2005 May; 16(3):774-6. PubMed ID: 15941003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Working set selection using functional gain for LS-SVM.
    Bo L; Jiao L; Wang L
    IEEE Trans Neural Netw; 2007 Sep; 18(5):1541-4. PubMed ID: 18220204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining DC algorithms (DCAs) and decomposition techniques for the training of nonpositive-semidefinite kernels.
    Akoa FB
    IEEE Trans Neural Netw; 2008 Nov; 19(11):1854-72. PubMed ID: 18990641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global convergence of SMO algorithm for support vector regression.
    Takahashi N; Guo J; Nishi T
    IEEE Trans Neural Netw; 2008 Jun; 19(6):971-82. PubMed ID: 18541498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study on SMO-type decomposition methods for support vector machines.
    Chen PH; Fan RE; Lin CJ
    IEEE Trans Neural Netw; 2006 Jul; 17(4):893-908. PubMed ID: 16856653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A support vector machine using the lazy learning approach for multi-class classification.
    Comak E; Arslan A
    J Med Eng Technol; 2006; 30(2):73-7. PubMed ID: 16531345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training sparse least squares support vector machines by the QR decomposition.
    Xia XL
    Neural Netw; 2018 Oct; 106():175-184. PubMed ID: 30075354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines.
    Li F; Zhao C; Xia Z; Wang Y; Zhou X; Li GZ
    BMC Complement Altern Med; 2012 Aug; 12():127. PubMed ID: 22898352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global convergence of decomposition learning methods for support vector machines.
    Takahashi N; Nishi T
    IEEE Trans Neural Netw; 2006 Nov; 17(6):1362-9. PubMed ID: 17131653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semisupervised least squares support vector machine.
    Adankon MM; Cheriet M; Biem A
    IEEE Trans Neural Netw; 2009 Dec; 20(12):1858-70. PubMed ID: 19963446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tutorial on support vector machine-based methods for classification problems in chemometrics.
    Luts J; Ojeda F; Van de Plas R; De Moor B; Van Huffel S; Suykens JA
    Anal Chim Acta; 2010 Apr; 665(2):129-45. PubMed ID: 20417323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An SMO algorithm for the potential support vector machine.
    Knebel T; Hochreiter S; Obermayer K
    Neural Comput; 2008 Jan; 20(1):271-87. PubMed ID: 18045009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incremental training of support vector machines.
    Shilton A; Palaniswami M; Ralph D; Tsoi AC
    IEEE Trans Neural Netw; 2005 Jan; 16(1):114-31. PubMed ID: 15732393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method.
    Taran S; Bajaj V
    Comput Methods Programs Biomed; 2019 May; 173():157-165. PubMed ID: 31046991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An overview and performance evaluation of classification-based least squares trained filters.
    Shao L; Zhang H; de Haan G
    IEEE Trans Image Process; 2008 Oct; 17(10):1772-82. PubMed ID: 18784026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene selection algorithms for microarray data based on least squares support vector machine.
    Tang EK; Suganthan PN; Yao X
    BMC Bioinformatics; 2006 Feb; 7():95. PubMed ID: 16504159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The construction of support vector machine classifier using the firefly algorithm.
    Chao CF; Horng MH
    Comput Intell Neurosci; 2015; 2015():212719. PubMed ID: 25802511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nesting one-against-one algorithm based on SVMs for pattern classification.
    Liu B; Hao Z; Tsang EC
    IEEE Trans Neural Netw; 2008 Dec; 19(12):2044-52. PubMed ID: 19054729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.