These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23509858)

  • 1. Finding maximum colorful subtrees in practice.
    Rauf I; Rasche F; Nicolas F; Böcker S
    J Comput Biol; 2013 Apr; 20(4):311-21. PubMed ID: 23509858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computing fragmentation trees from metabolite multiple mass spectrometry data.
    Scheubert K; Hufsky F; Rasche F; Böcker S
    J Comput Biol; 2011 Nov; 18(11):1383-97. PubMed ID: 22035289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards de novo identification of metabolites by analyzing tandem mass spectra.
    Böcker S; Rasche F
    Bioinformatics; 2008 Aug; 24(16):i49-i55. PubMed ID: 18689839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast alignment of fragmentation trees.
    Hufsky F; Dührkop K; Rasche F; Chimani M; Böcker S
    Bioinformatics; 2012 Jun; 28(12):i265-73. PubMed ID: 22689771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo analysis of electron impact mass spectra using fragmentation trees.
    Hufsky F; Rempt M; Rasche F; Pohnert G; Böcker S
    Anal Chim Acta; 2012 Aug; 739():67-76. PubMed ID: 22819051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overlapping communities detection through weighted graph community games.
    Benati S; Puerto J; Rodríguez-Chía AM; Temprano F
    PLoS One; 2023; 18(4):e0283857. PubMed ID: 37014883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Untangling tanglegrams: comparing trees by their drawings.
    Venkatachalam B; Apple J; St John K; Gusfield D
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(4):588-97. PubMed ID: 20530818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MIDAS: a database-searching algorithm for metabolite identification in metabolomics.
    Wang Y; Kora G; Bowen BP; Pan C
    Anal Chem; 2014 Oct; 86(19):9496-503. PubMed ID: 25157598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees.
    Liu K; Warnow TJ; Holder MT; Nelesen SM; Yu J; Stamatakis AP; Linder CR
    Syst Biol; 2012 Jan; 61(1):90-106. PubMed ID: 22139466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolite identification using automated comparison of high-resolution multistage mass spectral trees.
    Rojas-Cherto M; Peironcely JE; Kasper PT; van der Hooft JJ; de Vos RC; Vreeken R; Hankemeier T; Reijmers T
    Anal Chem; 2012 Jul; 84(13):5524-34. PubMed ID: 22612383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SwiFT: an index structure for reduced graph descriptors in virtual screening and clustering.
    Fischer JR; Rarey M
    J Chem Inf Model; 2007; 47(4):1341-53. PubMed ID: 17567122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On optimal comparability editing with applications to molecular diagnostics.
    Böcker S; Briesemeister S; Klau GW
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S61. PubMed ID: 19208165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exact and heuristic algorithms for Space Information Flow.
    Uwitonze A; Huang J; Ye Y; Cheng W; Li Z
    PLoS One; 2018; 13(3):e0193350. PubMed ID: 29584729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Best Match Graphs With Binary Trees.
    Schaller D; Geis M; Hellmuth M; Stadler PF
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):1679-1690. PubMed ID: 35044918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A scalable method for identifying frequent subtrees in sets of large phylogenetic trees.
    Ramu A; Kahveci T; Burleigh JG
    BMC Bioinformatics; 2012 Oct; 13():256. PubMed ID: 23033843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Counting missing values in a metabolite-intensity data set for measuring the analytical performance of a metabolomics platform.
    Huan T; Li L
    Anal Chem; 2015 Jan; 87(2):1306-13. PubMed ID: 25496403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substructure-based annotation of high-resolution multistage MS(n) spectral trees.
    Ridder L; van der Hooft JJ; Verhoeven S; de Vos RC; van Schaik R; Vervoort J
    Rapid Commun Mass Spectrom; 2012 Oct; 26(20):2461-71. PubMed ID: 22976213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the quality of tree-based protein classification.
    Lazareva-Ulitsky B; Diemer K; Thomas PD
    Bioinformatics; 2005 May; 21(9):1876-90. PubMed ID: 15647305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High resolution mass spectrometry based techniques at the crossroads of metabolic pathways.
    Junot C; Fenaille F; Colsch B; Bécher F
    Mass Spectrom Rev; 2014; 33(6):471-500. PubMed ID: 24288070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New approaches to phylogenetic tree search and their application to large numbers of protein alignments.
    Whelan S
    Syst Biol; 2007 Oct; 56(5):727-40. PubMed ID: 17849327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.