These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23509914)

  • 1. Accurate measurement of optical properties of narrow leaves and conifer needles with a typical integrating sphere and spectroradiometer.
    Noda HM; Motohka T; Murakami K; Muraoka H; Nasahara KN
    Plant Cell Environ; 2013 Oct; 36(10):1903-9. PubMed ID: 23509914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of methods to estimate photosynthetic light absorption in leaves with contrasting morphology.
    Olascoaga B; Mac Arthur A; Atherton J; Porcar-Castell A
    Tree Physiol; 2016 Mar; 36(3):368-79. PubMed ID: 26843207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Reflectance Measurements Acquired with a Contact Probe and an Integration Sphere: Implications for the Spectral Properties of Vegetation at a Leaf Level.
    Potůčková M; Červená L; Kupková L; Lhotáková Z; Lukeš P; Hanuš J; Novotný J; Albrechtová J
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.
    Michelot A; Simard S; Rathgeber C; Dufrêne E; Damesin C
    Tree Physiol; 2012 Aug; 32(8):1033-45. PubMed ID: 22718524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hydraulic conductivity of the xylem in conifer needles (Picea abies and Pinus mugo).
    Charra-Vaskou K; Mayr S
    J Exp Bot; 2011 Aug; 62(12):4383-90. PubMed ID: 21593348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Simulation of Needle Reflectance Spectrum and Sensitivity Analysis of Biochemical Parameters of Pinus Yunnanensis in Different Healthy Status].
    Lin QN; Huang HG; Chen L; Yu LF; Huang K
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2538-45. PubMed ID: 30074360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas exchange and leaf aging in an evergreen oak: causes and consequences for leaf carbon balance and canopy respiration.
    Rodríguez-Calcerrada J; Limousin JM; Martin-StPaul NK; Jaeger C; Rambal S
    Tree Physiol; 2012 Apr; 32(4):464-77. PubMed ID: 22491489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the optical properties of leaves under diffuse light.
    Gorton HL; Brodersen CR; Williams WE; Vogelmann TC
    Photochem Photobiol; 2010; 86(5):1076-83. PubMed ID: 20553406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertical and seasonal variation in the δ¹³C of leaf-respired CO₂ in a mixed conifer forest.
    Ubierna N; Marshall JD
    Tree Physiol; 2011 Apr; 31(4):414-27. PubMed ID: 21551356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sugar export limits size of conifer needles.
    Rademaker H; Zwieniecki MA; Bohr T; Jensen KH
    Phys Rev E; 2017 Apr; 95(4-1):042402. PubMed ID: 28505712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical algorithm and application of a double-integrating sphere system for measuring leaf transmittance and reflectance spectra.
    Mõttus M; Hovi A; Rautiainen M
    Appl Opt; 2017 Jan; 56(3):563-571. PubMed ID: 28157912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An annual pattern of native embolism in upper branches of four tall conifer species.
    McCulloh KA; Johnson DM; Meinzer FC; Lachenbruch B
    Am J Bot; 2011 Jun; 98(6):1007-15. PubMed ID: 21613067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicified structures affect leaf optical properties in grasses and sedge.
    Klančnik K; Vogel-Mikuš K; Gaberščik A
    J Photochem Photobiol B; 2014 Jan; 130():1-10. PubMed ID: 24231391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterns of leaf morphology and leaf N content in relation to winter temperatures in three evergreen tree species.
    Mediavilla S; Gallardo-López V; González-Zurdo P; Escudero A
    Int J Biometeorol; 2012 Sep; 56(5):915-26. PubMed ID: 21969112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental conditions, not sugar export efficiency, limit the length of conifer leaves.
    Han X; Turgeon R; Schulz A; Liesche J
    Tree Physiol; 2019 Feb; 39(2):312-319. PubMed ID: 29850887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of leaf transmittance in the near infrared region through reflectance measurements.
    Merzlyak MN; Melø TB; Razi Naqvi K
    J Photochem Photobiol B; 2004 May; 74(2-3):145-50. PubMed ID: 15157910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Within-twig leaf distribution patterns differ among plant life-forms in a subtropical Chinese forest.
    Meng F; Cao R; Yang D; Niklas KJ; Sun S
    Tree Physiol; 2013 Jul; 33(7):753-62. PubMed ID: 23933830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements.
    Yaroslavsky IV; Yaroslavsky AN; Goldbach T; Schwarzmaier HJ
    Appl Opt; 1996 Dec; 35(34):6797-809. PubMed ID: 21151265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydraulic design of pine needles: one-dimensional optimization for single-vein leaves.
    Zwieniecki MA; Stone HA; Leigh A; Boyce CK; Holbrook NM
    Plant Cell Environ; 2006 May; 29(5):803-9. PubMed ID: 17087464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach.
    Röttgers R; Gehnke S
    Appl Opt; 2012 Mar; 51(9):1336-51. PubMed ID: 22441480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.