BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 23510103)

  • 41. Structure and dynamics of an imidazoline nitroxide side chain with strongly hindered internal motion in proteins.
    Toledo Warshaviak D; Khramtsov VV; Cascio D; Altenbach C; Hubbell WL
    J Magn Reson; 2013 Jul; 232():53-61. PubMed ID: 23694751
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mapping electron paramagnetic resonance spin label conformations by the simulated scaling method.
    Fajer MI; Li H; Yang W; Fajer PG
    J Am Chem Soc; 2007 Nov; 129(45):13840-6. PubMed ID: 17948993
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Motion of spin-labeled side chains in T4 lysozyme: effect of side chain structure.
    Mchaourab HS; Kálai T; Hideg K; Hubbell WL
    Biochemistry; 1999 Mar; 38(10):2947-55. PubMed ID: 10074347
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SRLS analysis of 15N relaxation from bacteriophage T4 lysozyme: a tensorial perspective that features domain motion.
    Meirovitch E
    J Phys Chem B; 2012 May; 116(21):6118-27. PubMed ID: 22568692
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure and Internal Dynamics of Short RNA Duplexes Determined by a Combination of Pulsed EPR Methods and MD Simulations.
    Gauger M; Heinz M; Halbritter AJ; Stelzl LS; Erlenbach N; Hummer G; Sigurdsson ST; Prisner TF
    Angew Chem Int Ed Engl; 2024 Jun; 63(23):e202402498. PubMed ID: 38530284
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simulation of nitroxide electron paramagnetic resonance spectra from brownian trajectories and molecular dynamics simulations.
    DeSensi SC; Rangel DP; Beth AH; Lybrand TP; Hustedt EJ
    Biophys J; 2008 May; 94(10):3798-809. PubMed ID: 18234808
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Distance measurements by fluorescence energy homotransfer: evaluation in T4 lysozyme and correlation with dipolar coupling between spin labels.
    Zou P; Surendhran K; Mchaourab HS
    Biophys J; 2007 Feb; 92(4):L27-9. PubMed ID: 17142264
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A method for distance determination in proteins using a designed metal ion binding site and site-directed spin labeling: evaluation with T4 lysozyme.
    Voss J; Salwiński L; Kaback HR; Hubbell WL
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12295-9. PubMed ID: 8618888
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Study of a DNA Duplex by Nuclear Magnetic Resonance and Molecular Dynamics Simulations. Validation of Pulsed Dipolar Electron Paramagnetic Resonance Distance Measurements Using Triarylmethyl-Based Spin Labels.
    Lomzov AA; Sviridov EA; Shernuykov AV; Shevelev GY; Pyshnyi DV; Bagryanskaya EG
    J Phys Chem B; 2016 Jun; 120(23):5125-33. PubMed ID: 27195671
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Room-temperature distance measurements of immobilized spin-labeled protein by DEER/PELDOR.
    Meyer V; Swanson MA; Clouston LJ; Boratyński PJ; Stein RA; Mchaourab HS; Rajca A; Eaton SS; Eaton GR
    Biophys J; 2015 Mar; 108(5):1213-9. PubMed ID: 25762332
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On the origin of the polar order of T4 lysozyme on planar model surfaces.
    Jacobsen K; Risse T
    J Phys Chem B; 2008 Jan; 112(3):967-72. PubMed ID: 18171040
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Full Atom Simulations of Spin Label Conformations.
    Fajer P; Fajer M; Zawrotny M; Yang W
    Methods Enzymol; 2015; 563():623-42. PubMed ID: 26478501
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Overcoming artificial broadening in Gd(3+)-Gd(3+) distance distributions arising from dipolar pseudo-secular terms in DEER experiments.
    Cohen MR; Frydman V; Milko P; Iron MA; Abdelkader EH; Lee MD; Swarbrick JD; Raitsimring A; Otting G; Graham B; Feintuch A; Goldfarb D
    Phys Chem Chem Phys; 2016 May; 18(18):12847-59. PubMed ID: 27102158
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Algorithm for selection of optimized EPR distance restraints for de novo protein structure determination.
    Kazmier K; Alexander NS; Meiler J; McHaourab HS
    J Struct Biol; 2011 Mar; 173(3):549-57. PubMed ID: 21074624
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting Optimal DEER Label Positions to Study Protein Conformational Heterogeneity.
    Mittal S; Shukla D
    J Phys Chem B; 2017 Oct; 121(42):9761-9770. PubMed ID: 28726404
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-resolution EPR distance measurements on RNA and DNA with the non-covalent Ǵ spin label.
    Heinz M; Erlenbach N; Stelzl LS; Thierolf G; Kamble NR; Sigurdsson ST; Prisner TF; Hummer G
    Nucleic Acids Res; 2020 Jan; 48(2):924-933. PubMed ID: 31777925
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural origin of weakly ordered nitroxide motion in spin-labeled proteins.
    Fleissner MR; Cascio D; Hubbell WL
    Protein Sci; 2009 May; 18(5):893-908. PubMed ID: 19384990
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The determination of pair distance distributions by pulsed ESR using Tikhonov regularization.
    Chiang YW; Borbat PP; Freed JH
    J Magn Reson; 2005 Feb; 172(2):279-95. PubMed ID: 15649755
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The double-histidine Cu²⁺-binding motif: a highly rigid, site-specific spin probe for electron spin resonance distance measurements.
    Cunningham TF; Putterman MR; Desai A; Horne WS; Saxena S
    Angew Chem Int Ed Engl; 2015 May; 54(21):6330-4. PubMed ID: 25821033
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An optimal acquisition scheme for Q-band EPR distance measurements using Cu
    Bogetti X; Hasanbasri Z; Hunter HR; Saxena S
    Phys Chem Chem Phys; 2022 Jun; 24(24):14727-14739. PubMed ID: 35574729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.