BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 23510163)

  • 1. Fatty acid binding protein 3 (fabp3) is associated with insulin, lipids and cardiovascular phenotypes of the metabolic syndrome through epigenetic modifications in a Northern European family population.
    Zhang Y; Kent JW; Lee A; Cerjak D; Ali O; Diasio R; Olivier M; Blangero J; Carless MA; Kissebah AH
    BMC Med Genomics; 2013 Mar; 6():9. PubMed ID: 23510163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential evidence for epigenetic biomarkers of metabolic syndrome in human whole blood in Latinos.
    Urashima K; Miramontes A; Garcia LA; Coletta DK
    PLoS One; 2021; 16(10):e0259449. PubMed ID: 34714849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylation of SOCS3 is inversely associated with metabolic syndrome in an epigenome-wide association study of obesity.
    Ali O; Cerjak D; Kent JW; James R; Blangero J; Carless MA; Zhang Y
    Epigenetics; 2016 Sep; 11(9):699-707. PubMed ID: 27564309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive analysis of adiponectin QTLs using SNP association, SNP cis-effects on peripheral blood gene expression and gene expression correlation identified novel metabolic syndrome (MetS) genes with potential role in carcinogenesis and systemic inflammation.
    Zhang Y; Kent JW; Olivier M; Ali O; Cerjak D; Broeckel U; Abdou RM; Dyer TD; Comuzzie A; Curran JE; Carless MA; Rainwater DL; Göring HH; Blangero J; Kissebah AH
    BMC Med Genomics; 2013 Apr; 6():14. PubMed ID: 23628382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA methylation microarrays identify epigenetically regulated lipid related genes in obese patients with hypercholesterolemia.
    Płatek T; Polus A; Góralska J; Raźny U; Gruca A; Kieć-Wilk B; Zabielski P; Kapusta M; Słowińska-Solnica K; Solnica B; Malczewska-Malec M; Dembińska-Kieć A
    Mol Med; 2020 Oct; 26(1):93. PubMed ID: 33028190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome- and epigenome-wide association studies identify susceptibility of CpG sites and regions for metabolic syndrome in a Korean population.
    Lee HS; Kim B; Park T
    Clin Epigenetics; 2024 Apr; 16(1):60. PubMed ID: 38685121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influences of DNA methylation and epigenetic clocks, on metabolic disease, in middle-aged Koreans.
    Lee HS; Park T
    Clin Epigenetics; 2020 Oct; 12(1):148. PubMed ID: 33059731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FABP3 in the Anterior Cingulate Cortex Modulates the Methylation Status of the Glutamic Acid Decarboxylase
    Yamamoto Y; Kida H; Kagawa Y; Yasumoto Y; Miyazaki H; Islam A; Ogata M; Yanagawa Y; Mitsushima D; Fukunaga K; Owada Y
    J Neurosci; 2018 Dec; 38(49):10411-10423. PubMed ID: 30341178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study.
    Braun KVE; Dhana K; de Vries PS; Voortman T; van Meurs JBJ; Uitterlinden AG; ; Hofman A; Hu FB; Franco OH; Dehghan A
    Clin Epigenetics; 2017; 9():15. PubMed ID: 28194238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of fatty acid binding proteins 3 and 5 genes in rat pancreatic islets and INS-1E cells: regulation by fatty acids and glucose.
    Hyder A; Zenhom M; Klapper M; Herrmann J; Schrezenmeir J
    Islets; 2010; 2(3):174-84. PubMed ID: 21099311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA methylation of leptin and adiponectin promoters in children is reduced by the combined presence of obesity and insulin resistance.
    García-Cardona MC; Huang F; García-Vivas JM; López-Camarillo C; Del Río Navarro BE; Navarro Olivos E; Hong-Chong E; Bolaños-Jiménez F; Marchat LA
    Int J Obes (Lond); 2014 Nov; 38(11):1457-65. PubMed ID: 24549138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positive Correlation of Serum Adiponectin with Lipid Profile in Patients with Type 2 Diabetes Mellitus is Affected by Metabolic Syndrome Status.
    Eslamian M; Mohammadinejad P; Aryan Z; Nakhjavani M; Esteghamati A
    Arch Iran Med; 2016 Apr; 19(4):269-74. PubMed ID: 27041522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of multicomponent therapy in the metabolic syndrome, inflammation and cardiovascular risk in obese adolescents.
    Masquio DC; de Piano A; Campos RM; Sanches PL; Carnier J; Corgosinho FC; Netto BD; Carvalho-Ferreira JP; Oyama LM; Nascimento CM; de Mello MT; Tufik S; Dâmaso AR
    Br J Nutr; 2015 Jun; 113(12):1920-30. PubMed ID: 25907896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Associations of erythrocyte palmitoleic acid with adipokines, inflammatory markers, and the metabolic syndrome in middle-aged and older Chinese.
    Zong G; Ye X; Sun L; Li H; Yu Z; Hu FB; Sun Q; Lin X
    Am J Clin Nutr; 2012 Nov; 96(5):970-6. PubMed ID: 23015321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetics of metabolic syndrome.
    Stančáková A; Laakso M
    Rev Endocr Metab Disord; 2014 Dec; 15(4):243-52. PubMed ID: 25124343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CPT1A methylation is associated with plasma adiponectin.
    Aslibekyan S; Do AN; Xu H; Li S; Irvin MR; Zhi D; Tiwari HK; Absher DM; Shuldiner AR; Zhang T; Chen W; Tanner K; Hong C; Mitchell BD; Berenson G; Arnett DK
    Nutr Metab Cardiovasc Dis; 2017 Mar; 27(3):225-233. PubMed ID: 28139377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cancer-promoting gene fatty acid-binding protein 5 (FABP5) is epigenetically regulated during human prostate carcinogenesis.
    Kawaguchi K; Kinameri A; Suzuki S; Senga S; Ke Y; Fujii H
    Biochem J; 2016 Feb; 473(4):449-61. PubMed ID: 26614767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA methylation and lipid metabolism: an EWAS of 226 metabolic measures.
    Gomez-Alonso MDC; Kretschmer A; Wilson R; Pfeiffer L; Karhunen V; Seppälä I; Zhang W; Mittelstraß K; Wahl S; Matias-Garcia PR; Prokisch H; Horn S; Meitinger T; Serrano-Garcia LR; Sebert S; Raitakari O; Loh M; Rathmann W; Müller-Nurasyid M; Herder C; Roden M; Hurme M; Jarvelin MR; Ala-Korpela M; Kooner JS; Peters A; Lehtimäki T; Chambers JC; Gieger C; Kettunen J; Waldenberger M
    Clin Epigenetics; 2021 Jan; 13(1):7. PubMed ID: 33413638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic silencing of the ANKRD26 gene correlates to the pro-inflammatory profile and increased cardio-metabolic risk factors in human obesity.
    Desiderio A; Longo M; Parrillo L; Campitelli M; Cacace G; de Simone S; Spinelli R; Zatterale F; Cabaro S; Dolce P; Formisano P; Milone M; Miele C; Beguinot F; Raciti GA
    Clin Epigenetics; 2019 Dec; 11(1):181. PubMed ID: 31801613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic regulation of differentially methylated genes in visceral adipose tissue of severely obese men discordant for the metabolic syndrome.
    Guénard F; Tchernof A; Deshaies Y; Biron S; Lescelleur O; Biertho L; Marceau S; Pérusse L; Vohl MC
    Transl Res; 2017 Jun; 184():1-11.e2. PubMed ID: 28219716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.