BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 23510297)

  • 41. Temperature-dependent drug release from DPPC:C12H25-PNIPAM-COOH liposomes: control of the drug loading/release by modulation of the nanocarriers' components.
    Pippa N; Meristoudi A; Pispas S; Demetzos C
    Int J Pharm; 2015 May; 485(1-2):374-82. PubMed ID: 25776453
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lysolipid incorporation in dipalmitoylphosphatidylcholine bilayer membranes enhances the ion permeability and drug release rates at the membrane phase transition.
    Mills JK; Needham D
    Biochim Biophys Acta; 2005 Oct; 1716(2):77-96. PubMed ID: 16216216
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Triggered release of hydrophilic agents from plasmalogen liposomes using visible light or acid.
    Anderson VC; Thompson DH
    Biochim Biophys Acta; 1992 Aug; 1109(1):33-42. PubMed ID: 1504078
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy.
    Pradhan P; Giri J; Rieken F; Koch C; Mykhaylyk O; Döblinger M; Banerjee R; Bahadur D; Plank C
    J Control Release; 2010 Feb; 142(1):108-21. PubMed ID: 19819275
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lipid membrane composition influences drug release from dioleoylphosphatidylethanolamine-based liposomes on exposure to ultrasound.
    Evjen TJ; Nilssen EA; Fowler RA; Røgnvaldsson S; Brandl M; Fossheim SL
    Int J Pharm; 2011 Mar; 406(1-2):114-6. PubMed ID: 21185927
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection of nanosized ordered domains in DOPC/DPPC and DOPC/Ch binary lipid mixture systems of large unilamellar vesicles using a TEMPO quenching method.
    Suga K; Umakoshi H
    Langmuir; 2013 Apr; 29(15):4830-8. PubMed ID: 23506052
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tumor targeting in vivo by means of thermolabile fusogenic liposomes.
    Zellmer S; Cevc G
    J Drug Target; 1996; 4(1):19-29. PubMed ID: 8798875
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Size of thermosensitive liposomes influences content release.
    Hossann M; Wang T; Wiggenhorn M; Schmidt R; Zengerle A; Winter G; Eibl H; Peller M; Reiser M; Issels RD; Lindner LH
    J Control Release; 2010 Nov; 147(3):436-43. PubMed ID: 20727921
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterizing the freezing behavior of liposomes as a tool to understand the cryopreservation procedures.
    Siow LF; Rades T; Lim MH
    Cryobiology; 2007 Dec; 55(3):210-21. PubMed ID: 17905224
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative Experimental and Computational Study of Monoalkyl Chain Phosphatidylcholine-Containing Thermoresponsive Liposomes.
    Eleftheriou K; Sideratou Z; Thanassoulas A; Papakyriakou A; Tsiourvas D
    J Phys Chem B; 2016 Jun; 120(24):5417-28. PubMed ID: 27280363
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction of doxorubicin and dipalmitoylphosphatidylcholine liposomes.
    Mady MM; Shafaa MW; Abbase ER; Fahium AH
    Cell Biochem Biophys; 2012 Apr; 62(3):481-6. PubMed ID: 22194155
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reconsideration of drug release from temperature-sensitive liposomes.
    Ono A; Takeuchi K; Sukenari A; Suzuki T; Adachi I; Ueno M
    Biol Pharm Bull; 2002 Jan; 25(1):97-101. PubMed ID: 11824566
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acid-catalyzed plasmenylcholine hydrolysis and its effect on bilayer permeability: a quantitative study.
    Gerasimov OV; Schwan A; Thompson DH
    Biochim Biophys Acta; 1997 Mar; 1324(2):200-14. PubMed ID: 9092707
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Doxorubicin liposomes as an investigative model to study the skin permeation of nanocarriers.
    Boakye CH; Patel K; Singh M
    Int J Pharm; 2015 Jul; 489(1-2):106-16. PubMed ID: 25910414
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Solubilization of negatively charged DPPC/DPPG liposomes by bile salts.
    Hildebrand A; Beyer K; Neubert R; Garidel P; Blume A
    J Colloid Interface Sci; 2004 Nov; 279(2):559-71. PubMed ID: 15464825
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction between amphipathic triblock copolymers and L-α-dipalmitoyl phosphatidylcholine large unilamellar vesicles.
    Palominos MA; Vilches D; Bossel E; Soto-Arriaza MA
    Colloids Surf B Biointerfaces; 2016 Dec; 148():30-40. PubMed ID: 27591568
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Curcumin disorders 1,2-dipalmitoyl-sn-glycero-3-phosphocholine membranes and favors the formation of nonlamellar structures by 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine.
    Pérez-Lara A; Ausili A; Aranda FJ; de Godos A; Torrecillas A; Corbalán-García S; Gómez-Fernández JC
    J Phys Chem B; 2010 Aug; 114(30):9778-86. PubMed ID: 20666521
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of poly(ethylene glycol) (PEG) chain length of PEG-lipid on the permeability of liposomal bilayer membranes.
    Hashizaki K; Taguchi H; Itoh C; Sakai H; Abe M; Saito Y; Ogawa N
    Chem Pharm Bull (Tokyo); 2003 Jul; 51(7):815-20. PubMed ID: 12843588
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of alcohol-induced lipid interdigitation on proton permeability in L-alpha-dipalmitoylphosphatidylcholine vesicles.
    Zeng J; Smith KE; Chong PL
    Biophys J; 1993 Oct; 65(4):1404-14. PubMed ID: 8274634
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Controlling spatial distribution of functional lipids in a supported lipid bilayer prepared from vesicles.
    Lee HS; Kim YC; Wang Z; Brenner JS; Muzykantov VR; Myerson JW; Composto RJ
    J Colloid Interface Sci; 2024 Jun; 664():1042-1055. PubMed ID: 38522178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.