BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23510479)

  • 21. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering.
    Puppi D; Mota C; Gazzarri M; Dinucci D; Gloria A; Myrzabekova M; Ambrosio L; Chiellini F
    Biomed Microdevices; 2012 Dec; 14(6):1115-27. PubMed ID: 22767245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of surface stiffness and cell patterning on polymer films using micropatterns.
    Sunami H; Shimizu Y; Denda J; Yokota I; Yoshizawa T; Uechi Y; Nakasone H; Igarashi Y; Kishimoto H; Matsushita M
    J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):976-985. PubMed ID: 28474403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell and protein compatibility of parylene-C surfaces.
    Chang TY; Yadav VG; De Leo S; Mohedas A; Rajalingam B; Chen CL; Selvarasah S; Dokmeci MR; Khademhosseini A
    Langmuir; 2007 Nov; 23(23):11718-25. PubMed ID: 17915896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Osteoblast response to PLGA tissue engineering scaffolds with PEO modified surface chemistries and demonstration of patterned cell response.
    Koegler WS; Griffith LG
    Biomaterials; 2004 Jun; 25(14):2819-30. PubMed ID: 14962560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of fibrinogen/P(LLA-CL) hybrid nanofibrous scaffold for potential soft tissue engineering applications.
    He C; Xu X; Zhang F; Cao L; Feng W; Wang H; Mo X
    J Biomed Mater Res A; 2011 Jun; 97(3):339-47. PubMed ID: 21465642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of nano-structured polymer surfaces on osteoblast adhesion and proliferation.
    Yeon SJ; Lee JW; Lee JW; Kwark YJ; Kim SH; Lee KY
    J Control Release; 2011 Nov; 152 Suppl 1():e257-8. PubMed ID: 22195896
    [No Abstract]   [Full Text] [Related]  

  • 27. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J; Xiao S; Lu X; Wang J; Weng J
    Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility.
    Eitan Y; Sarig U; Dahan N; Machluf M
    Tissue Eng Part C Methods; 2010 Aug; 16(4):671-83. PubMed ID: 19780649
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering.
    Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D
    Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative evaluation of adhesion of osteosarcoma cells to hydrophobic polymer substrate with tunable elasticity.
    Yoshikawa HY; Cui J; Kratz K; Matsuzaki T; Nakabayashi S; Marx A; Engel U; Lendlein A; Tanaka M
    J Phys Chem B; 2012 Jul; 116(28):8024-30. PubMed ID: 22715933
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatially controlled cell adhesion via micropatterned surface modification of poly(dimethylsiloxane).
    Patrito N; McCague C; Norton PR; Petersen NO
    Langmuir; 2007 Jan; 23(2):715-9. PubMed ID: 17209625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resorbable scaffolds from three different techniques: electrospun fabrics, salt-leaching porous films, and smooth flat surfaces.
    Finne-Wistrand A; Albertsson AC; Kwon OH; Kawazoe N; Chen G; Kang IK; Hasuda H; Gong J; Ito Y
    Macromol Biosci; 2008 Oct; 8(10):951-9. PubMed ID: 18567051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real time responses of fibroblasts to plastically compressed fibrillar collagen hydrogels.
    Ghezzi CE; Muja N; Marelli B; Nazhat SN
    Biomaterials; 2011 Jul; 32(21):4761-72. PubMed ID: 21514662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of mechanical instability of polymer scaffolds on cell adhesion.
    Shimomura S; Matsuno H; Tanaka K
    Langmuir; 2013 Sep; 29(35):11087-92. PubMed ID: 23919741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Breath figure patterns made easy.
    Huang C; Kamra T; Chaudhary S; Shen X
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5971-6. PubMed ID: 24689785
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of plasma surface modification on the biocompatibility of UHMWPE.
    Kaklamani G; Mehrban N; Chen J; Bowen J; Dong H; Grover L; Stamboulis A
    Biomed Mater; 2010 Oct; 5(5):054102. PubMed ID: 20876959
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding.
    Yang Y; Basu S; Tomasko DL; Lee LJ; Yang ST
    Biomaterials; 2005 May; 26(15):2585-94. PubMed ID: 15585261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.