These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 23510502)
1. More on polypseudorotaxanes formed between poly(ethylene glycol) and α-cyclodextrin. Sabadini E; Egídio Fdo C; Cosgrove T Langmuir; 2013 Apr; 29(15):4664-9. PubMed ID: 23510502 [TBL] [Abstract][Full Text] [Related]
2. Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymers and alpha-cyclodextrin. Li J; Ni X; Zhou Z; Leong KW J Am Chem Soc; 2003 Feb; 125(7):1788-95. PubMed ID: 12580604 [TBL] [Abstract][Full Text] [Related]
3. Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin. Huh KM; Cho YW; Chung H; Kwon IC; Jeong SY; Ooya T; Lee WK; Sasaki S; Yui N Macromol Biosci; 2004 Feb; 4(2):92-9. PubMed ID: 15468199 [TBL] [Abstract][Full Text] [Related]
4. Rapid binding of concanavalin A and maltose-polyrotaxane conjugates due to mobile motion of alpha-cyclodextrins threaded onto a poly(ethylene glycol). Ooya T; Utsunomiya H; Eguchi M; Yui N Bioconjug Chem; 2005; 16(1):62-9. PubMed ID: 15656576 [TBL] [Abstract][Full Text] [Related]
5. Prednisolone-α-cyclodextrin-star PEG polypseudorotaxanes with controlled drug delivery properties. Bílková E; Sedlák M; Dvořák B; Ventura K; Knotek P; Beneš L Org Biomol Chem; 2010 Dec; 8(23):5423-30. PubMed ID: 20859603 [TBL] [Abstract][Full Text] [Related]
6. Supramolecular Polypseudorotaxanes composed of star-shaped porphyrin-cored poly(epsilon-caprolactone) and alpha-cyclodextrin. Dai XH; Dong CM; Fa HB; Yan D; Wei Y Biomacromolecules; 2006 Dec; 7(12):3527-33. PubMed ID: 17154484 [TBL] [Abstract][Full Text] [Related]
7. Slow-release system of pegylated lysozyme utilizing formation of polypseudorotaxanes with cyclodextrins. Higashi T; Hirayama F; Yamashita S; Misumi S; Arima H; Uekama K Int J Pharm; 2009 Jun; 374(1-2):26-32. PubMed ID: 19446755 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and characterization of polyrotaxanes consisting of cationic alpha-cyclodextrins threaded on poly[(ethylene oxide)-ran-(propylene oxide)] as gene carriers. Yang C; Wang X; Li H; Goh SH; Li J Biomacromolecules; 2007 Nov; 8(11):3365-74. PubMed ID: 17929967 [TBL] [Abstract][Full Text] [Related]
9. Polypseudorotaxanes of pegylated α-cyclodextrin/polyamidoamine dendrimer conjugate with cyclodextrins as a sustained release system for DNA. Motoyama K; Hayashida K; Higashi T; Arima H Bioorg Med Chem; 2012 Feb; 20(4):1425-33. PubMed ID: 22277591 [TBL] [Abstract][Full Text] [Related]
10. Formation and self-organization kinetics of alpha-CD/PEO-based pseudo-polyrotaxanes in water. A specific behavior at 30 degrees C. Travelet C; Schlatter G; Hébraud P; Brochon C; Lapp A; Hadziioannou G Langmuir; 2009 Aug; 25(15):8723-34. PubMed ID: 19301842 [TBL] [Abstract][Full Text] [Related]
11. Supramolecular self-assembly of monoend-functionalized methoxy poly(ethylene glycol) and α-cyclodextrin: from micelles to hydrogel. Long Y; Song H; He B; Lai Y; Liu R; Long C; Gu Z J Biomater Appl; 2012 Sep; 27(3):333-44. PubMed ID: 21926145 [TBL] [Abstract][Full Text] [Related]
12. Solvent-Free Formation of Cyclodextrin-Based Pseudopolyrotaxanes of Polyethylene Glycol: Kinetic and Structural Aspects. Guembe-Michel N; Durán A; Sirera R; González-Gaitano G Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054867 [TBL] [Abstract][Full Text] [Related]
13. Two-phase channel structures based on alpha-cyclodextrin-polyethylene glycol inclusion complexes. Topchieva IN; Tonelli AE; Panova IG; Matuchina EV; Kalashnikov FA; Gerasimov VI; Rusa CC; Rusa M; Hunt MA Langmuir; 2004 Oct; 20(21):9036-43. PubMed ID: 15461484 [TBL] [Abstract][Full Text] [Related]
14. Supramolecular control of polyplex dissociation and cell transfection: efficacy of amino groups and threading cyclodextrins in biocleavable polyrotaxanes. Yamashita A; Kanda D; Katoono R; Yui N; Ooya T; Maruyama A; Akita H; Kogure K; Harashima H J Control Release; 2008 Oct; 131(2):137-44. PubMed ID: 18700157 [TBL] [Abstract][Full Text] [Related]
15. Tailoring the supramolecular structure of aminated polyrotaxanes toward enhanced cellular internalization. Yokoyama N; Seo JH; Tamura A; Sasaki Y; Yui N Macromol Biosci; 2014 Mar; 14(3):359-68. PubMed ID: 24634263 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of novel coumarin derivative functionalized polypseudorotaxane micelles for drug delivery. Chang J; Li Y; Wang G; He B; Gu Z Nanoscale; 2013 Jan; 5(2):813-20. PubMed ID: 23235914 [TBL] [Abstract][Full Text] [Related]
17. Formation of Polyrotaxane Particles via Template Assembly. Tardy BL; Tan S; Dam HH; Suma T; Guo J; Qiao GG; Caruso F Biomacromolecules; 2017 Jul; 18(7):2118-2127. PubMed ID: 28617594 [TBL] [Abstract][Full Text] [Related]
18. Block-selected molecular recognition and formation of polypseudorotaxanes between poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymers and alpha-cyclodextrin. Li J; Ni X; Leong K Angew Chem Int Ed Engl; 2003 Jan; 42(1):69-72. PubMed ID: 19757593 [No Abstract] [Full Text] [Related]
19. Thermoreversible sol-gel transition of an aqueous solution of polyrotaxane composed of highly methylated alpha-cyclodextrin and polyethylene glycol. Kidowaki M; Zhao C; Kataoka T; Ito K Chem Commun (Camb); 2006 Oct; (39):4102-3. PubMed ID: 17024262 [TBL] [Abstract][Full Text] [Related]
20. Branched polyrotaxane hydrogels consisting of alpha-cyclodextrin and low-molecular-weight four-arm polyethylene glycol and the utility of their thixotropic property for controlled drug release. Wang J; Williamson GS; Yang H Colloids Surf B Biointerfaces; 2018 May; 165():144-149. PubMed ID: 29476924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]