These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23510907)

  • 1. Full-field strain measurement and fracture analysis of rat femora in compression test.
    Amin Yavari S; van der Stok J; Weinans H; Zadpoor AA
    J Biomech; 2013 Apr; 46(7):1282-92. PubMed ID: 23510907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full-field strain measurement during mechanical testing of the human femur at physiologically relevant strain rates.
    Grassi L; Väänänen SP; Yavari SA; Jurvelin JS; Weinans H; Ristinmaa M; Zadpoor AA; Isaksson H
    J Biomech Eng; 2014 Nov; 136(11):. PubMed ID: 25162941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study between axial compression and lateral fall configuration tested in a rat proximal femur model.
    Zhang G; Qin L; Shi Y; Leung K
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):729-35. PubMed ID: 15963616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repeatability of digital image correlation for measurement of surface strains in composite long bones.
    Väänänen SP; Amin Yavari S; Weinans H; Zadpoor AA; Jurvelin JS; Isaksson H
    J Biomech; 2013 Jul; 46(11):1928-32. PubMed ID: 23791085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New QCT analysis approach shows the importance of fall orientation on femoral neck strength.
    Carpenter RD; Beaupré GS; Lang TF; Orwoll ES; Carter DR;
    J Bone Miner Res; 2005 Sep; 20(9):1533-42. PubMed ID: 16059625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age and ovariectomy impair both the normalization of mechanical properties and the accretion of mineral by the fracture callus in rats.
    Meyer RA; Tsahakis PJ; Martin DF; Banks DM; Harrow ME; Kiebzak GM
    J Orthop Res; 2001 May; 19(3):428-35. PubMed ID: 11398856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trabecular bone tissue strains in the healthy and osteoporotic human femur.
    Van Rietbergen B; Huiskes R; Eckstein F; Rüegsegger P
    J Bone Miner Res; 2003 Oct; 18(10):1781-8. PubMed ID: 14584888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Femoroplasty-augmentation of mechanical properties in the osteoporotic proximal femur: a biomechanical investigation of PMMA reinforcement in cadaver bones.
    Heini PF; Franz T; Fankhauser C; Gasser B; Ganz R
    Clin Biomech (Bristol, Avon); 2004 Jun; 19(5):506-12. PubMed ID: 15182986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element modeling for strain rate dependency of fracture resistance in compact bone.
    Charoenphan S; Polchai A
    J Biomech Eng; 2007 Feb; 129(1):20-5. PubMed ID: 17227094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fracture healing in rat femora as affected by functional weight-bearing.
    Sarmiento A; Schaeffer JF; Beckerman L; Latta LL; Enis JE
    J Bone Joint Surg Am; 1977 Apr; 59(3):369-75. PubMed ID: 849949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring strain using digital image correlation of second harmonic generation images.
    Wentzell S; Sterling Nesbitt R; Macione J; Kotha S
    J Biomech; 2013 Aug; 46(12):2032-8. PubMed ID: 23845730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear deformation and fracture of human cortical bone.
    Tang T; Ebacher V; Cripton P; Guy P; McKay H; Wang R
    Bone; 2015 Feb; 71():25-35. PubMed ID: 25305520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of bone size, not density, on the stiffness of the proximal part of normal and osteoporotic human femora.
    Cordey J; Schneider M; Belendez C; Ziegler WJ; Rahn BA; Perren SM
    J Bone Miner Res; 1992 Dec; 7 Suppl 2():S437-44. PubMed ID: 1485554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of implant overlap on the mechanical properties of the femur.
    Harris T; Ruth JT; Szivek J; Haywood B
    J Trauma; 2003 May; 54(5):930-5. PubMed ID: 12777906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E; Taddei F; Cristofolini L; Viceconti M
    J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures.
    de Bakker PM; Manske SL; Ebacher V; Oxland TR; Cripton PA; Guy P
    J Biomech; 2009 Aug; 42(12):1917-25. PubMed ID: 19524929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Comparative study of stability following the nailing of fractures of the femur shaft. An experimental study with cadaver bones].
    Wruhs O
    Wien Klin Wochenschr Suppl; 1986; 169():3-16. PubMed ID: 3464133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of mechanical properties of healing fractures using acoustic emission.
    Watanabe Y; Takai S; Arai Y; Yoshino N; Hirasawa Y
    J Orthop Res; 2001 Jul; 19(4):548-53. PubMed ID: 11518260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High strain rate response of rabbit femur bones.
    Shunmugasamy VC; Gupta N; Coelho PG
    J Biomech; 2010 Nov; 43(15):3044-50. PubMed ID: 20673668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting failure load of the femur with simulated osteolytic defects using noninvasive imaging technique in a simplified load case.
    Lee T
    Ann Biomed Eng; 2007 Apr; 35(4):642-50. PubMed ID: 17286207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.