These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 23510969)
1. Experimental assessment of a new direct fixation implant for artificial limbs. Tomaszewski PK; Lasnier B; Hannink G; Verkerke GJ; Verdonschot N J Mech Behav Biomed Mater; 2013 May; 21():77-85. PubMed ID: 23510969 [TBL] [Abstract][Full Text] [Related]
2. Simulated bone remodeling around two types of osseointegrated implants for direct fixation of upper-leg prostheses. Tomaszewski PK; Verdonschot N; Bulstra SK; Rietman JS; Verkerke GJ J Mech Behav Biomed Mater; 2012 Nov; 15():167-75. PubMed ID: 23032436 [TBL] [Abstract][Full Text] [Related]
3. Numerical analysis of an osseointegrated prosthesis fixation with reduced bone failure risk and periprosthetic bone loss. Tomaszewski PK; van Diest M; Bulstra SK; Verdonschot N; Verkerke GJ J Biomech; 2012 Jul; 45(11):1875-80. PubMed ID: 22677337 [TBL] [Abstract][Full Text] [Related]
4. [Cementless socket fixation based on the "press-fit" concept in total hip joint arthroplasty]. Morscher EW; Widmer KH; Bereiter H; Elke R; Schenk R Acta Chir Orthop Traumatol Cech; 2002; 69(1):8-15. PubMed ID: 11951572 [TBL] [Abstract][Full Text] [Related]
5. A plasma-sprayed titanium proximal coating reduces the risk of periprosthetic femoral fracture in cementless hip arthroplasty. Miles B; Walter WL; Kolos E; Waters T; Appleyard R; Gillies RM; Donohoo S; Ruys AJ Biomed Mater Eng; 2015; 25(3):267-78. PubMed ID: 26407113 [TBL] [Abstract][Full Text] [Related]
6. Biomechanical evaluation of a novel Limb Prosthesis Osseointegrated Fixation System designed to combine the advantages of interference-fit and threaded solutions. Prochor P; Piszczatowski S; Sajewicz E Acta Bioeng Biomech; 2016; 18(4):21-31. PubMed ID: 28133377 [TBL] [Abstract][Full Text] [Related]
7. Comparison of different hip prosthesis shapes considering micro-level bone remodeling and stress-shielding criteria using three-dimensional design space topology optimization. Boyle C; Kim IY J Biomech; 2011 Jun; 44(9):1722-8. PubMed ID: 21497816 [TBL] [Abstract][Full Text] [Related]
8. A method of quantification of stress shielding in the proximal femur using hierarchical computational modeling. Be'ery-Lipperman M; Gefen A Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):35-44. PubMed ID: 16880155 [TBL] [Abstract][Full Text] [Related]
9. Incidence of the boundary condition between bone and soft tissue in a finite element model of a transfemoral amputee. Ramírez JF; Vélez JA Prosthet Orthot Int; 2012 Dec; 36(4):405-14. PubMed ID: 22354886 [TBL] [Abstract][Full Text] [Related]
10. Design considerations for ceramic resurfaced femoral head: effect of interface characteristics on failure mechanisms. Pal B; Gupta S; New AM Comput Methods Biomech Biomed Engin; 2010; 13(2):143-55. PubMed ID: 19787497 [TBL] [Abstract][Full Text] [Related]
11. Mesh morphing for finite element analysis of implant positioning in cementless total hip replacements. Bah MT; Nair PB; Browne M Med Eng Phys; 2009 Dec; 31(10):1235-43. PubMed ID: 19744873 [TBL] [Abstract][Full Text] [Related]
12. Biomechanical comparison of newly designed stemless prosthesis and conventional hip prosthesis--an experimental study. Tai CL; Lee MS; Chen WP; Hsieh PH; Lee PC; Shih CH Biomed Mater Eng; 2005; 15(3):239-49. PubMed ID: 15912004 [TBL] [Abstract][Full Text] [Related]
13. Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses. Engh CA; O'Connor D; Jasty M; McGovern TF; Bobyn JD; Harris WH Clin Orthop Relat Res; 1992 Dec; (285):13-29. PubMed ID: 1446429 [TBL] [Abstract][Full Text] [Related]
14. A comparative analysis of internal bone remodelling concepts in a novel implant for direct skeletal attachment of limb prosthesis evaluation: A finite element analysis. Prochor P; Sajewicz E Proc Inst Mech Eng H; 2018 Mar; 232(3):289-298. PubMed ID: 29350089 [TBL] [Abstract][Full Text] [Related]
15. Basic considerations for determining the amount of press fit in acetabular cup endoprostheses as a function of the elastic bone behavior. Winter W; Karl M Biomed Tech (Berl); 2014 Oct; 59(5):413-20. PubMed ID: 24937501 [TBL] [Abstract][Full Text] [Related]
16. Mechanical analysis of a rodent segmental bone defect model: the effects of internal fixation and implant stiffness on load transfer. Yavari SA; van der Stok J; Ahmadi SM; Wauthle R; Schrooten J; Weinans H; Zadpoor AA J Biomech; 2014 Aug; 47(11):2700-8. PubMed ID: 24882739 [TBL] [Abstract][Full Text] [Related]
17. Finite element modeling of resurfacing hip prosthesis: estimation of accuracy through experimental validation. Taddei F; Martelli S; Gill HS; Cristofolini L; Viceconti M J Biomech Eng; 2010 Feb; 132(2):021002. PubMed ID: 20370239 [TBL] [Abstract][Full Text] [Related]
18. Strain shielding inspired re-design of proximal femoral stems for total hip arthroplasty. Cilla M; Checa S; Duda GN J Orthop Res; 2017 Nov; 35(11):2534-2544. PubMed ID: 28176355 [TBL] [Abstract][Full Text] [Related]
20. In-vitro biomechanical evaluation of stress shielding and initial stability of a low-modulus hip stem made of β type Ti-33.6Nb-4Sn alloy. Yamako G; Chosa E; Totoribe K; Hanada S; Masahashi N; Yamada N; Itoi E Med Eng Phys; 2014 Dec; 36(12):1665-71. PubMed ID: 25282098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]