BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2351138)

  • 1. Structural and catalytic properties of oxidized and reduced chloroplast NADP-malate dehydrogenase upon denaturation and renaturation.
    Scheibe R; Rudolph R; Reng W; Jaenicke R
    Eur J Biochem; 1990 May; 189(3):581-7. PubMed ID: 2351138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limited proteolysis of inactive tetrameric chloroplast NADP-malate dehydrogenase produces active dimers.
    Fickenscher K; Scheibe R
    Arch Biochem Biophys; 1988 Feb; 260(2):771-9. PubMed ID: 3341764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary structure and analysis of the location of the regulatory disulfide bond of pea chloroplast NADP-malate dehydrogenase.
    Scheibe R; Kampfenkel K; Wessels R; Tripier D
    Biochim Biophys Acta; 1991 Jan; 1076(1):1-8. PubMed ID: 1986782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning, site-specific mutagenesis, expression and characterization of full-length chloroplast NADP-malate dehydrogenase from Pisum sativum.
    Reng W; Riessland R; Scheibe R; Jaenicke R
    Eur J Biochem; 1993 Oct; 217(1):189-97. PubMed ID: 8223554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloroplast NADP-malate dehydrogenase: structural basis of light-dependent regulation of activity by thiol oxidation and reduction.
    Carr PD; Verger D; Ashton AR; Ollis DL
    Structure; 1999 Apr; 7(4):461-75. PubMed ID: 10196131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of C4 photosynthesis: regulation of activation and inactivation of NADP-malate dehydrogenase by NADP and NADPH.
    Ashton AR; Hatch MD
    Arch Biochem Biophys; 1983 Dec; 227(2):416-24. PubMed ID: 6667025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for light activation of a chloroplast enzyme: the structure of sorghum NADP-malate dehydrogenase in its oxidized form.
    Johansson K; Ramaswamy S; Saarinen M; Lemaire-Chamley M; Issakidis-Bourguet E; Miginiac-Maslow M; Eklund H
    Biochemistry; 1999 Apr; 38(14):4319-26. PubMed ID: 10194350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of biophysical differences between oxidized and reduced chloroplast NADP-malate dehydrogenase.
    Scheibe R; Geissler A; Rother T
    Arch Biochem Biophys; 1993 Feb; 300(2):635-40. PubMed ID: 8434943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteines of chloroplast NADP-malate dehydrogenase form mixed disulfides.
    Ocheretina O; Scheibe R
    FEBS Lett; 1994 Dec; 355(3):254-8. PubMed ID: 7988683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox equilibria between the regulatory thiols of light/dark-modulated chloroplast enzymes and dithiothreitol: fine-tuning by metabolites.
    Faske M; Holtgrefe S; Ocheretina O; Meister M; Backhausen JE; Scheibe R
    Biochim Biophys Acta; 1995 Feb; 1247(1):135-42. PubMed ID: 7873583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation-reduction properties of the regulatory disulfides of sorghum chloroplast nicotinamide adenine dinucleotide phosphate-malate dehydrogenase.
    Hirasawa M; Ruelland E; Schepens I; Issakidis-Bourguet E; Miginiac-Maslow M; Knaff DB
    Biochemistry; 2000 Mar; 39(12):3344-50. PubMed ID: 10727227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of the thioredoxin-dependent activation of the NADP-malate dehydrogenase and cofactor specificity.
    Schepens I; Johansson K; Decottignies P; Gillibert M; Hirasawa M; Knaff DB; Miginiac-Maslow M
    J Biol Chem; 2000 Jul; 275(28):20996-1001. PubMed ID: 10801830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of the second regulatory disulfide bridge of recombinant sorghum leaf NADP-malate dehydrogenase.
    Issakidis E; Saarinen M; Decottignies P; Jacquot JP; Crétin C; Gadal P; Miginiac-Maslow M
    J Biol Chem; 1994 Feb; 269(5):3511-7. PubMed ID: 8106392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADP-malate dehydrogenase from leaves of Zea mays: purification and physical, chemical, and kinetic properties.
    Kagawa T; Bruno PL
    Arch Biochem Biophys; 1988 Feb; 260(2):674-95. PubMed ID: 3341761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct NMR observation of the thioredoxin-mediated reduction of the chloroplast NADP-malate dehydrogenase provides a structural basis for the relief of autoinhibition.
    Krimm I; Goyer A; Issakidis-Bourguet E; Miginiac-Maslow M; Lancelin JM
    J Biol Chem; 1999 Dec; 274(49):34539-42. PubMed ID: 10574915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible denaturation of thermophilic malate dehydrogenase by guanidine hydrochloride and acid.
    Iijima S; Saiki T; Beppu T
    J Biochem; 1984 May; 95(5):1273-81. PubMed ID: 6746606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited proteolysis of NADP-malate dehydrogenase from pea chloroplast by aminopeptidase K yields monomers. Evidence of proteolytic degradation of NADP-malate dehydrogenase during purification from pea.
    Kampfenkel K
    Biochim Biophys Acta; 1992 Dec; 1156(1):71-7. PubMed ID: 1472542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dark modulation of NADP-dependent malate dehydrogenase and glucose-6-phosphate dehydrogenase in the chloroplast.
    Scheibe R; Anderson LE
    Biochim Biophys Acta; 1981 Jun; 636(1):58-64. PubMed ID: 7284346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of C4 photosynthesis: physical and kinetic properties of active (dithiol) and inactive (disulfide) NADP-malate dehydrogenase from Zea mays.
    Ashton AR; Hatch MD
    Arch Biochem Biophys; 1983 Dec; 227(2):406-15. PubMed ID: 6667024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme regulation in C4 photosynthesis: mechanism of activation of NADP-malate dehydrogenase by reduced thioredoxin.
    Jacquot JP; Gadal P; Nishizawa AN; Yee BC; Crawford NA; Buchanan BB
    Arch Biochem Biophys; 1984 Jan; 228(1):170-8. PubMed ID: 6696429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.