These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 23511421)
1. Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic. Li Y; Li Y; Wang B; Luo Y; Yang D; Tong P; Zhao J; Luo L; Zhou Y; Chen S; Cheng F; Qu J Nat Chem; 2013 Apr; 5(4):320-6. PubMed ID: 23511421 [TBL] [Abstract][Full Text] [Related]
2. Construction and Function of Thiolate-Bridged Diiron N Yang D; Wang B; Qu J Acc Chem Res; 2024 Jul; 57(13):1761-1776. PubMed ID: 38861704 [TBL] [Abstract][Full Text] [Related]
3. Diiron bridged-thiolate complexes that bind N2 at the Fe(II)Fe(II), Fe(II)Fe(I), and Fe(I)Fe(I) redox states. Creutz SE; Peters JC J Am Chem Soc; 2015 Jun; 137(23):7310-3. PubMed ID: 26039253 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of Nitrogen Reduction to Ammonia in a Diiron Model of Nitrogenase. Barchenko M; O'Malley PJ; de Visser SP Inorg Chem; 2023 Sep; 62(36):14715-14726. PubMed ID: 37650683 [TBL] [Abstract][Full Text] [Related]
5. Nitrogenase model complexes [Cp*Fe(mu-SR(1))2(mu-eta(2)-R(2)N=NH)FeCp*] (R(1) = Me, Et; R(2) = Me, Ph; Cp* = eta(5)-C5Me5): synthesis, structure, and catalytic N-N bond cleavage of hydrazines on diiron centers. Chen Y; Zhou Y; Chen P; Tao Y; Li Y; Qu J J Am Chem Soc; 2008 Nov; 130(46):15250-1. PubMed ID: 18954139 [TBL] [Abstract][Full Text] [Related]
6. Ammonia production at the FeMo cofactor of nitrogenase: results from density functional theory. Kästner J; Blöchl PE J Am Chem Soc; 2007 Mar; 129(10):2998-3006. PubMed ID: 17309262 [TBL] [Abstract][Full Text] [Related]
7. Biological nitrogen fixation in theory, practice, and reality: a perspective on the molybdenum nitrogenase system. Threatt SD; Rees DC FEBS Lett; 2023 Jan; 597(1):45-58. PubMed ID: 36344435 [TBL] [Abstract][Full Text] [Related]
12. Nitrogenase-Relevant Reactivity of a Synthetic Iron-Sulfur-Carbon Site. Speelman AL; Čorić I; Van Stappen C; DeBeer S; Mercado BQ; Holland PL J Am Chem Soc; 2019 Aug; 141(33):13148-13157. PubMed ID: 31403298 [TBL] [Abstract][Full Text] [Related]
13. Catalytic conversion of nitrogen to ammonia by an iron model complex. Anderson JS; Rittle J; Peters JC Nature; 2013 Sep; 501(7465):84-7. PubMed ID: 24005414 [TBL] [Abstract][Full Text] [Related]
14. Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Liu J; Kelley MS; Wu W; Banerjee A; Douvalis AP; Wu J; Zhang Y; Schatz GC; Kanatzidis MG Proc Natl Acad Sci U S A; 2016 May; 113(20):5530-5. PubMed ID: 27140630 [TBL] [Abstract][Full Text] [Related]
15. A thiolate-bridged Fe Zhang Y; Zhao J; Yang D; Wang B; Zhou Y; Wang J; Chen H; Mei T; Ye S; Qu J Nat Chem; 2022 Jan; 14(1):46-52. PubMed ID: 34949791 [TBL] [Abstract][Full Text] [Related]
16. A 10(6)-fold enhancement in N2-binding affinity of an Fe2(μ-H)2 core upon reduction to a mixed-valence Fe(II)Fe(I) state. Rittle J; McCrory CC; Peters JC J Am Chem Soc; 2014 Oct; 136(39):13853-62. PubMed ID: 25184795 [TBL] [Abstract][Full Text] [Related]
17. Homogeneous iron complexes for the conversion of dinitrogen into ammonia and hydrazine. Hazari N Chem Soc Rev; 2010 Nov; 39(11):4044-56. PubMed ID: 20571678 [TBL] [Abstract][Full Text] [Related]
18. Vanadium-Catalyzed Dinitrogen Reduction to Ammonia via a [V]═NNH Huang W; Peng LY; Zhang J; Liu C; Song G; Su JH; Fang WH; Cui G; Hu S J Am Chem Soc; 2023 Jan; 145(2):811-821. PubMed ID: 36596224 [TBL] [Abstract][Full Text] [Related]
19. Structure, reactivity, and spectroscopy of nitrogenase-related synthetic and biological clusters. Wang CH; DeBeer S Chem Soc Rev; 2021 Aug; 50(15):8743-8761. PubMed ID: 34159992 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and Reactivity of Iron Complexes with a Biomimetic SCS Pincer Ligand. Speelman AL; Skubi KL; Mercado BQ; Holland PL Inorg Chem; 2021 Feb; 60(3):1965-1974. PubMed ID: 33443404 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]