These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 23511543)

  • 1. Parametric Bayesian priors and better choice of negative examples improve protein function prediction.
    Youngs N; Penfold-Brown D; Drew K; Shasha D; Bonneau R
    Bioinformatics; 2013 May; 29(9):1190-8. PubMed ID: 23511543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative example selection for protein function prediction: the NoGO database.
    Youngs N; Penfold-Brown D; Bonneau R; Shasha D
    PLoS Comput Biol; 2014 Jun; 10(6):e1003644. PubMed ID: 24922051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks.
    Greenfield A; Hafemeister C; Bonneau R
    Bioinformatics; 2013 Apr; 29(8):1060-7. PubMed ID: 23525069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian Markov Random Field analysis for protein function prediction based on network data.
    Kourmpetis YA; van Dijk AD; Bink MC; van Ham RC; ter Braak CJ
    PLoS One; 2010 Feb; 5(2):e9293. PubMed ID: 20195360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-supervised multi-label collective classification ensemble for functional genomics.
    Wu Q; Ye Y; Ho SS; Zhou S
    BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S17. PubMed ID: 25521242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the impact of topological protein features on the negative examples selection.
    Boldi P; Frasca M; Malchiodi D
    BMC Bioinformatics; 2018 Nov; 19(Suppl 14):417. PubMed ID: 30453879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data.
    Qian J; Lin J; Luscombe NM; Yu H; Gerstein M
    Bioinformatics; 2003 Oct; 19(15):1917-26. PubMed ID: 14555624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NegGOA: negative GO annotations selection using ontology structure.
    Fu G; Wang J; Yang B; Yu G
    Bioinformatics; 2016 Oct; 32(19):2996-3004. PubMed ID: 27318205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SUBAcon: a consensus algorithm for unifying the subcellular localization data of the Arabidopsis proteome.
    Hooper CM; Tanz SK; Castleden IR; Vacher MA; Small ID; Millar AH
    Bioinformatics; 2014 Dec; 30(23):3356-64. PubMed ID: 25150248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Bayesian system integrating expression data with sequence patterns for localizing proteins: comprehensive application to the yeast genome.
    Drawid A; Gerstein M
    J Mol Biol; 2000 Aug; 301(4):1059-75. PubMed ID: 10966805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-parametric Bayesian approach to post-translational modification refinement of predictions from tandem mass spectrometry.
    Chung C; Emili A; Frey BJ
    Bioinformatics; 2013 Apr; 29(7):821-9. PubMed ID: 23419374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bayesian decision fusion approach for microRNA target prediction.
    Yue D; Guo M; Chen Y; Huang Y
    BMC Genomics; 2012; 13 Suppl 8(Suppl 8):S13. PubMed ID: 23282032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resolving the structure of interactomes with hierarchical agglomerative clustering.
    Park Y; Bader JS
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S44. PubMed ID: 21342576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimalist ensemble algorithms for genome-wide protein localization prediction.
    Lin JR; Mondal AM; Liu R; Hu J
    BMC Bioinformatics; 2012 Jul; 13():157. PubMed ID: 22759391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bayesian approach for identifying miRNA targets by combining sequence prediction and gene expression profiling.
    Liu H; Yue D; Zhang L; Chen Y; Gao SJ; Huang Y
    BMC Genomics; 2010 Dec; 11 Suppl 3(Suppl 3):S12. PubMed ID: 21143779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detailing regulatory networks through large scale data integration.
    Huttenhower C; Mutungu KT; Indik N; Yang W; Schroeder M; Forman JJ; Troyanskaya OG; Coller HA
    Bioinformatics; 2009 Dec; 25(24):3267-74. PubMed ID: 19825796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide prediction of discrete traits using Bayesian regressions and machine learning.
    González-Recio O; Forni S
    Genet Sel Evol; 2011 Feb; 43(1):7. PubMed ID: 21329522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WNP: a novel algorithm for gene products annotation from weighted functional networks.
    Magi A; Tattini L; Benelli M; Giusti B; Abbate R; Ruffo S
    PLoS One; 2012; 7(6):e38767. PubMed ID: 22761703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks.
    Werhli AV; Grzegorczyk M; Husmeier D
    Bioinformatics; 2006 Oct; 22(20):2523-31. PubMed ID: 16844710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of indirect connections in gene networks in predicting function.
    Gillis J; Pavlidis P
    Bioinformatics; 2011 Jul; 27(13):1860-6. PubMed ID: 21551147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.