These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 23511774)

  • 1. Discrimination of land-use types in a catchment by energy dispersive X-ray fluorescence and principal component analysis.
    Melquiades FL; Andreoni LF; Thomaz EL
    Appl Radiat Isot; 2013 Jul; 77():27-31. PubMed ID: 23511774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-elemental EDXRF mapping of polluted soil from former horticultural land.
    Jørgensen N; Laursen J; Viksna A; Pind N; Holm PE
    Environ Int; 2005 Jan; 31(1):43-52. PubMed ID: 15607778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry.
    Kaniu MI; Angeyo KH; Mwala AK; Mangala MJ
    Anal Chim Acta; 2012 Jun; 729():21-5. PubMed ID: 22595429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SEM-EDS analysis and discrimination of forensic soil.
    Cengiz S; Cengiz Karaca A; Cakir I; Bülent Uner H; Sevindik A
    Forensic Sci Int; 2004 Apr; 141(1):33-7. PubMed ID: 15066711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray fluorescence and gamma-ray spectrometry combined with multivariate analysis for topographic studies in agricultural soil.
    de Castilhos NDB; Melquiades FL; Thomaz EL; Bastos RO
    Appl Radiat Isot; 2015 Jan; 95():63-71. PubMed ID: 25464179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quick analysis of organic matter in soil by energy-dispersive X-ray fluorescence and multivariate analysis.
    Morona F; Dos Santos FR; Brinatti AM; Melquiades FL
    Appl Radiat Isot; 2017 Dec; 130():13-20. PubMed ID: 28923297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray spectromicroscopy in soil and environmental sciences.
    Thieme J; Sedlmair J; Gleber SC; Prietzel J; Coates J; Eusterhues K; Abbt-Braun G; Salome M
    J Synchrotron Radiat; 2010 Mar; 17(2):149-57. PubMed ID: 20157265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemometric interpretation of heavy metal patterns in soils worldwide.
    Skrbić B; Durisić-Mladenović N
    Chemosphere; 2010 Sep; 80(11):1360-9. PubMed ID: 20598341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The application of positive matrix factorization in the analysis, characterisation and detection of contaminated soils.
    Vaccaro S; Sobiecka E; Contini S; Locoro G; Free G; Gawlik BM
    Chemosphere; 2007 Oct; 69(7):1055-63. PubMed ID: 17544480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forensic analysis of soil and sediment traces by scanning electron microscopy and energy-dispersive X-ray analysis: an experimental investigation.
    Pye K; Croft D
    Forensic Sci Int; 2007 Jan; 165(1):52-63. PubMed ID: 16621381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Resolution of overlapped spectra in polarization X-ray fluorescence spectrometry by genetic algorithm].
    Luo LQ; Zhan XC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Mar; 28(3):704-6. PubMed ID: 18536448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A robust X-ray fluorescence technique for multielemental analysis of solid samples.
    Kallithrakas-Kontos N; Foteinis S; Paigniotaki K; Papadogiannakis M
    Environ Monit Assess; 2016 Feb; 188(2):120. PubMed ID: 26815558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy dispersive X-ray fluorescence and scattering assessment of soil quality via partial least squares and artificial neural networks analytical modeling approaches.
    Kaniu MI; Angeyo KH; Mwala AK; Mwangi FK
    Talanta; 2012 Aug; 98():236-40. PubMed ID: 22939153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a field portable X-Ray fluorescence analyzer to determine the concentration of lead and other metals in soil samples.
    Clark S; Menrath W; Chen M; Roda S; Succop P
    Ann Agric Environ Med; 1999; 6(1):27-32. PubMed ID: 10384212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative determination of absolute organohalogen concentrations in environmental samples by X-ray absorption spectroscopy.
    Leri AC; Hay MB; Lanzirotti A; Rao W; Myneni SC
    Anal Chem; 2006 Aug; 78(16):5711-8. PubMed ID: 16906715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier transform infrared-attenuated total reflection nitrate determination of soil pastes using principal component regression, partial least squares, and cross-correlation.
    Linker R; Kenny A; Shaviv A; Singher L; Shmulevich I
    Appl Spectrosc; 2004 May; 58(5):516-20. PubMed ID: 15165326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy dispersive X-ray fluorescence analysis of mine waters from the Migori Gold Mining Belt in Southern Nyanza, Kenya.
    Odumo OB; Mustapha AO; Patel JP; Angeyo HK
    Bull Environ Contam Toxicol; 2011 Sep; 87(3):260-3. PubMed ID: 21681402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of soil samples according to their geographic origin using gamma-ray spectrometry and principal component analysis.
    Dragović S; Onjia A
    J Environ Radioact; 2006; 89(2):150-8. PubMed ID: 16793182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical Differentiation of Osseous and Nonosseous Materials Using Scanning Electron Microscopy-Energy-Dispersive X-Ray Spectrometry and Multivariate Statistical Analysis.
    Meizel-Lambert CJ; Schultz JJ; Sigman ME
    J Forensic Sci; 2015 Nov; 60(6):1534-41. PubMed ID: 26234321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of metal pollution in soils under two landuse patterns in the Angouran region, NW Iran: a study based on multivariate data analysis.
    Qishlaqi A; Moore F; Forghani G
    J Hazard Mater; 2009 Dec; 172(1):374-84. PubMed ID: 19647938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.