These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 23512007)

  • 1. Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor.
    Wang L; Ji H; Wang S; Kong L; Jiang X; Yang G
    Nanoscale; 2013 May; 5(9):3793-9. PubMed ID: 23512007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale preparation of shape controlled SnO and improved capacitance for supercapacitors: from nanoclusters to square microplates.
    Wang L; Ji H; Zhu F; Chen Z; Yang Y; Jiang X; Pinto J; Yang G
    Nanoscale; 2013 Aug; 5(16):7613-21. PubMed ID: 23842544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembled and One-Step Synthesis of Interconnected 3D Network of Fe
    Kumar R; Singh RK; Vaz AR; Savu R; Moshkalev SA
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8880-8890. PubMed ID: 28225588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile preparation of nickel/carbonized wood nanocomposite for environmentally friendly supercapacitor electrodes.
    Yaddanapudi HS; Tian K; Teng S; Tiwari A
    Sci Rep; 2016 Sep; 6():33659. PubMed ID: 27651005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fe3O4/Polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties.
    Zhang H; Zhong X; Xu JJ; Chen HY
    Langmuir; 2008 Dec; 24(23):13748-52. PubMed ID: 18991414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds.
    Hui C; Shen C; Tian J; Bao L; Ding H; Li C; Tian Y; Shi X; Gao HJ
    Nanoscale; 2011 Feb; 3(2):701-5. PubMed ID: 21103488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical codeposition of vanadium oxide and polypyrrole for high-performance supercapacitor with high working voltage.
    Bai MH; Bian LJ; Song Y; Liu XX
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12656-64. PubMed ID: 25010464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile hydrothermal synthesis of NiMoO4@CoMoO4 hierarchical nanospheres for supercapacitor applications.
    Zhang Z; Liu Y; Huang Z; Ren L; Qi X; Wei X; Zhong J
    Phys Chem Chem Phys; 2015 Aug; 17(32):20795-804. PubMed ID: 26214743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile route to growth of γ-MnOOH nanorods and electrochemical capacitance properties.
    Li Z; Bao H; Miao X; Chen X
    J Colloid Interface Sci; 2011 May; 357(2):286-91. PubMed ID: 21377162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fe3O4/carbon hybrid nanoparticle electrodes for high-capacity electrochemical capacitors.
    Lee JS; Shin DH; Jun J; Lee C; Jang J
    ChemSusChem; 2014 Jun; 7(6):1676-83. PubMed ID: 24706636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step facile solvothermal synthesis of copper ferrite-graphene composite as a high-performance supercapacitor material.
    Zhang W; Quan B; Lee C; Park SK; Li X; Choi E; Diao G; Piao Y
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2404-14. PubMed ID: 25584805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycol assisted synthesis of graphene-MnO2-polyaniline ternary composites for high performance supercapacitor electrodes.
    Mu B; Zhang W; Shao S; Wang A
    Phys Chem Chem Phys; 2014 May; 16(17):7872-80. PubMed ID: 24643731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic characterization of magnetic Fe3O4@Au core shell nanoparticles.
    Fouad DM; El-Said WA; Mohamed MB
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():392-7. PubMed ID: 25617979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol-water mixed solvent.
    Dang F; Enomoto N; Hojo J; Enpuku K
    Ultrason Sonochem; 2009 Jun; 16(5):649-54. PubMed ID: 19112040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sonochemical synthesis of Co
    Gnana Sundara Raj B; Bhuvaneshwari S; Wu JJ; Asiri AM; Anandan S
    Ultrason Sonochem; 2018 Mar; 41():435-440. PubMed ID: 29137772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and Electrochemical Properties of Nitrogen-Doped Graphene (NG)/Nickle Oxide (NiO) Nanocomposite for Supercapacitor.
    Chen CN; Ma T; Zhang Q; Fan W; Fu XW; Wang ZB
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9699-704. PubMed ID: 26682399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of layered graphene and tungsten oxide hybrids for enhanced performance supercapacitors.
    Xing LL; Huang KJ; Fang LX
    Dalton Trans; 2016 Nov; 45(43):17439-17446. PubMed ID: 27735015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures.
    Subramanian V; Zhu H; Vajtai R; Ajayan PM; Wei B
    J Phys Chem B; 2005 Nov; 109(43):20207-14. PubMed ID: 16853612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent surface modification of chemically derived graphene and its application as supercapacitor electrode material.
    Jana M; Khanra P; Murmu NC; Samanta P; Lee JH; Kuila T
    Phys Chem Chem Phys; 2014 Apr; 16(16):7618-26. PubMed ID: 24643242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of reduced graphene oxide decorated with CeO
    Ojha GP; Pant B; Park SJ; Park M; Kim HY
    J Colloid Interface Sci; 2017 May; 494():338-344. PubMed ID: 28167422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.