BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 23512106)

  • 1. Nanocellulose electroconductive composites.
    Shi Z; Phillips GO; Yang G
    Nanoscale; 2013 Apr; 5(8):3194-201. PubMed ID: 23512106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube.
    Koga H; Saito T; Kitaoka T; Nogi M; Suganuma K; Isogai A
    Biomacromolecules; 2013 Apr; 14(4):1160-5. PubMed ID: 23428212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overview of bacterial cellulose composites: a multipurpose advanced material.
    Shah N; Ul-Islam M; Khattak WA; Park JK
    Carbohydr Polym; 2013 Nov; 98(2):1585-98. PubMed ID: 24053844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroconductive hydrogels: synthesis, characterization and biomedical applications.
    Guiseppi-Elie A
    Biomaterials; 2010 Apr; 31(10):2701-16. PubMed ID: 20060580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically conductive nano graphite-filled bacterial cellulose composites.
    Erbas Kiziltas E; Kiziltas A; Rhodes K; Emanetoglu NW; Blumentritt M; Gardner DJ
    Carbohydr Polym; 2016 Jan; 136():1144-51. PubMed ID: 26572457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-gold assisted highly conducting and biocompatible bacterial cellulose-PEDOT:PSS films for biology-device interface applications.
    Khan S; Ul-Islam M; Ullah MW; Israr M; Jang JH; Park JK
    Int J Biol Macromol; 2018 Feb; 107(Pt A):865-873. PubMed ID: 28935538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose Acetate Based Nanocomposites for Biomedical Applications: A Review.
    Bifari EN; Bahadar Khan S; Alamry KA; Asiri AM; Akhtar K
    Curr Pharm Des; 2016; 22(20):3007-19. PubMed ID: 26979093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paper actuators made with cellulose and hybrid materials.
    Kim J; Yun S; Mahadeva SK; Yun K; Yang SY; Maniruzzaman M
    Sensors (Basel); 2010; 10(3):1473-85. PubMed ID: 22294882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of carbon nanotubes by amphiphilic glycosylated proteins.
    Fang W; Linder MB; Laaksonen P
    J Colloid Interface Sci; 2018 Feb; 512():318-324. PubMed ID: 29078183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose nanocrystals mediated assembly of graphene in rubber composites for chemical sensing applications.
    Cao J; Zhang X; Wu X; Wang S; Lu C
    Carbohydr Polym; 2016 Apr; 140():88-95. PubMed ID: 26876831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals.
    Podsiadlo P; Choi SY; Shim B; Lee J; Cuddihy M; Kotov NA
    Biomacromolecules; 2005; 6(6):2914-8. PubMed ID: 16283706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial Cellulose-Graphene Based Nanocomposites.
    Troncoso OP; Torres FG
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32906692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and properties of polypyrrole/bacterial cellulose nanocomposites.
    Muller D; Rambo CR; Porto LM; Schreiner WH; Barra GM
    Carbohydr Polym; 2013 Apr; 94(1):655-62. PubMed ID: 23544587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes.
    Hamedi MM; Hajian A; Fall AB; Håkansson K; Salajkova M; Lundell F; Wågberg L; Berglund LA
    ACS Nano; 2014 Mar; 8(3):2467-76. PubMed ID: 24512093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.
    Gulotty R; Castellino M; Jagdale P; Tagliaferro A; Balandin AA
    ACS Nano; 2013 Jun; 7(6):5114-21. PubMed ID: 23672711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields.
    Ul-Islam M; Khan S; Ullah MW; Park JK
    Biotechnol J; 2015 Dec; 10(12):1847-61. PubMed ID: 26395011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content.
    Qi XY; Yan D; Jiang Z; Cao YK; Yu ZZ; Yavari F; Koratkar N
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3130-3. PubMed ID: 21744832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: a review.
    Upadhyayula VK; Gadhamshetty V
    Biotechnol Adv; 2010; 28(6):802-16. PubMed ID: 20599491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density.
    Wu C; Huang X; Wu X; Xie L; Yang K; Jiang P
    Nanoscale; 2013 May; 5(9):3847-55. PubMed ID: 23525168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites.
    Zaman I; Kuan HC; Dai J; Kawashima N; Michelmore A; Sovi A; Dong S; Luong L; Ma J
    Nanoscale; 2012 Aug; 4(15):4578-86. PubMed ID: 22706725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.