These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 23512106)

  • 1. Nanocellulose electroconductive composites.
    Shi Z; Phillips GO; Yang G
    Nanoscale; 2013 Apr; 5(8):3194-201. PubMed ID: 23512106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube.
    Koga H; Saito T; Kitaoka T; Nogi M; Suganuma K; Isogai A
    Biomacromolecules; 2013 Apr; 14(4):1160-5. PubMed ID: 23428212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overview of bacterial cellulose composites: a multipurpose advanced material.
    Shah N; Ul-Islam M; Khattak WA; Park JK
    Carbohydr Polym; 2013 Nov; 98(2):1585-98. PubMed ID: 24053844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroconductive hydrogels: synthesis, characterization and biomedical applications.
    Guiseppi-Elie A
    Biomaterials; 2010 Apr; 31(10):2701-16. PubMed ID: 20060580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically conductive nano graphite-filled bacterial cellulose composites.
    Erbas Kiziltas E; Kiziltas A; Rhodes K; Emanetoglu NW; Blumentritt M; Gardner DJ
    Carbohydr Polym; 2016 Jan; 136():1144-51. PubMed ID: 26572457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-gold assisted highly conducting and biocompatible bacterial cellulose-PEDOT:PSS films for biology-device interface applications.
    Khan S; Ul-Islam M; Ullah MW; Israr M; Jang JH; Park JK
    Int J Biol Macromol; 2018 Feb; 107(Pt A):865-873. PubMed ID: 28935538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose Acetate Based Nanocomposites for Biomedical Applications: A Review.
    Bifari EN; Bahadar Khan S; Alamry KA; Asiri AM; Akhtar K
    Curr Pharm Des; 2016; 22(20):3007-19. PubMed ID: 26979093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paper actuators made with cellulose and hybrid materials.
    Kim J; Yun S; Mahadeva SK; Yun K; Yang SY; Maniruzzaman M
    Sensors (Basel); 2010; 10(3):1473-85. PubMed ID: 22294882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of carbon nanotubes by amphiphilic glycosylated proteins.
    Fang W; Linder MB; Laaksonen P
    J Colloid Interface Sci; 2018 Feb; 512():318-324. PubMed ID: 29078183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose nanocrystals mediated assembly of graphene in rubber composites for chemical sensing applications.
    Cao J; Zhang X; Wu X; Wang S; Lu C
    Carbohydr Polym; 2016 Apr; 140():88-95. PubMed ID: 26876831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals.
    Podsiadlo P; Choi SY; Shim B; Lee J; Cuddihy M; Kotov NA
    Biomacromolecules; 2005; 6(6):2914-8. PubMed ID: 16283706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial Cellulose-Graphene Based Nanocomposites.
    Troncoso OP; Torres FG
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32906692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and properties of polypyrrole/bacterial cellulose nanocomposites.
    Muller D; Rambo CR; Porto LM; Schreiner WH; Barra GM
    Carbohydr Polym; 2013 Apr; 94(1):655-62. PubMed ID: 23544587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes.
    Hamedi MM; Hajian A; Fall AB; Håkansson K; Salajkova M; Lundell F; Wågberg L; Berglund LA
    ACS Nano; 2014 Mar; 8(3):2467-76. PubMed ID: 24512093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.
    Gulotty R; Castellino M; Jagdale P; Tagliaferro A; Balandin AA
    ACS Nano; 2013 Jun; 7(6):5114-21. PubMed ID: 23672711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields.
    Ul-Islam M; Khan S; Ullah MW; Park JK
    Biotechnol J; 2015 Dec; 10(12):1847-61. PubMed ID: 26395011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content.
    Qi XY; Yan D; Jiang Z; Cao YK; Yu ZZ; Yavari F; Koratkar N
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3130-3. PubMed ID: 21744832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: a review.
    Upadhyayula VK; Gadhamshetty V
    Biotechnol Adv; 2010; 28(6):802-16. PubMed ID: 20599491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density.
    Wu C; Huang X; Wu X; Xie L; Yang K; Jiang P
    Nanoscale; 2013 May; 5(9):3847-55. PubMed ID: 23525168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites.
    Zaman I; Kuan HC; Dai J; Kawashima N; Michelmore A; Sovi A; Dong S; Luong L; Ma J
    Nanoscale; 2012 Aug; 4(15):4578-86. PubMed ID: 22706725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.