These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 23512150)
21. Research on an Mg-Zn alloy as a degradable biomaterial. Zhang S; Zhang X; Zhao C; Li J; Song Y; Xie C; Tao H; Zhang Y; He Y; Jiang Y; Bian Y Acta Biomater; 2010 Feb; 6(2):626-40. PubMed ID: 19545650 [TBL] [Abstract][Full Text] [Related]
23. Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL. Matena J; Petersen S; Gieseke M; Teske M; Beyerbach M; Kampmann A; Murua Escobar H; Gellrich NC; Haferkamp H; Nolte I Int J Mol Sci; 2015 Jun; 16(6):13287-301. PubMed ID: 26068455 [TBL] [Abstract][Full Text] [Related]
24. PHB, crystalline and amorphous magnesium alloys: promising candidates for bioresorbable osteosynthesis implants? Celarek A; Kraus T; Tschegg EK; Fischerauer SF; Stanzl-Tschegg S; Uggowitzer PJ; Weinberg AM Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1503-10. PubMed ID: 24364952 [TBL] [Abstract][Full Text] [Related]
25. A surface-engineered multifunctional TiO Lin Z; Wu S; Liu X; Qian S; Chu PK; Zheng Y; Cheung KMC; Zhao Y; Yeung KWK Acta Biomater; 2019 Nov; 99():495-513. PubMed ID: 31518705 [TBL] [Abstract][Full Text] [Related]
26. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats. Tao ZS; Zhou WS; He XW; Liu W; Bai BL; Zhou Q; Huang ZL; Tu KK; Li H; Sun T; Lv YX; Cui W; Yang L Mater Sci Eng C Mater Biol Appl; 2016 May; 62():226-32. PubMed ID: 26952418 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of the biocompatibility of two magnesium alloys as degradable implant materials in comparison to titanium as non-resorbable material in the rabbit. Hampp C; Angrisani N; Reifenrath J; Bormann D; Seitz JM; Meyer-Lindenberg A Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):317-26. PubMed ID: 25428078 [TBL] [Abstract][Full Text] [Related]
28. Osteosynthesis of a cranio-osteoplasty with a biodegradable magnesium plate system in miniature pigs. Naujokat H; Seitz JM; Açil Y; Damm T; Möller I; Gülses A; Wiltfang J Acta Biomater; 2017 Oct; 62():434-445. PubMed ID: 28844965 [TBL] [Abstract][Full Text] [Related]
29. Corrosion behavior and cytotoxicity of Mg-35Zn-3Ca alloy for surface modified biodegradable implant material. Park RS; Kim YK; Lee SJ; Jang YS; Park IS; Yun YH; Bae TS; Lee MH J Biomed Mater Res B Appl Biomater; 2012 May; 100(4):911-23. PubMed ID: 22287336 [TBL] [Abstract][Full Text] [Related]
30. Comparative biomechanical and radiological characterization of osseointegration of a biodegradable magnesium alloy pin and a copolymeric control for osteosynthesis. Lindtner RA; Castellani C; Tangl S; Zanoni G; Hausbrandt P; Tschegg EK; Stanzl-Tschegg SE; Weinberg AM J Mech Behav Biomed Mater; 2013 Dec; 28():232-43. PubMed ID: 24001403 [TBL] [Abstract][Full Text] [Related]
31. Biocompatibility and degradation properties of WE43 Mg alloys with and without heat treatment: In vivo evaluation and comparison in a cranial bone sheep model. Torroni A; Xiang C; Witek L; Rodriguez ED; Coelho PG; Gupta N J Craniomaxillofac Surg; 2017 Dec; 45(12):2075-2083. PubMed ID: 29089254 [TBL] [Abstract][Full Text] [Related]
32. Biocompatibility of supercritical CO2-treated titanium implants in a rat model. Hill CM; Kang QK; Wahl C; Jimenez A; Laberge M; Drews M; Matthews MA; An YH Int J Artif Organs; 2006 Apr; 29(4):430-3. PubMed ID: 16705612 [TBL] [Abstract][Full Text] [Related]
33. Bio-corrosion characterization of Mg-Zn-X (X = Ca, Mn, Si) alloys for biomedical applications. Rosalbino F; De Negri S; Saccone A; Angelini E; Delfino S J Mater Sci Mater Med; 2010 Apr; 21(4):1091-8. PubMed ID: 20020186 [TBL] [Abstract][Full Text] [Related]
34. Peri-implant tissue response and biodegradation performance of a Mg-1.0Ca-0.5Sr alloy in rat tibia. Berglund IS; Jacobs BY; Allen KD; Kim SE; Pozzi A; Allen JB; Manuel MV Mater Sci Eng C Mater Biol Appl; 2016 May; 62():79-85. PubMed ID: 26952400 [TBL] [Abstract][Full Text] [Related]
35. In vitro and in vivo studies on magnesium alloys to evaluate the feasibility of their use in obstetrics and gynecology. Bao G; Fan Q; Ge D; Sun M; Guo H; Xia D; Liu Y; Liu J; Wu S; He B; Zheng Y Acta Biomater; 2019 Oct; 97():623-636. PubMed ID: 31386929 [TBL] [Abstract][Full Text] [Related]
36. The effects of β-TCP on mechanical properties, corrosion behavior and biocompatibility of β-TCP/Zn-Mg composites. Pan C; Sun X; Xu G; Su Y; Liu D Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110397. PubMed ID: 31923980 [TBL] [Abstract][Full Text] [Related]
37. In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg-Zn-Zr composites. Ye X; Chen M; Yang M; Wei J; Liu D J Mater Sci Mater Med; 2010 Apr; 21(4):1321-8. PubMed ID: 20012772 [TBL] [Abstract][Full Text] [Related]
38. Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements. Chen Y; Dou J; Yu H; Chen C J Biomater Appl; 2019 May; 33(10):1348-1372. PubMed ID: 30854910 [TBL] [Abstract][Full Text] [Related]