These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 23512150)
41. In Vitro and in Vivo Studies on Biomedical Magnesium Low-Alloying with Elements Gadolinium and Zinc for Orthopedic Implant Applications. Bian D; Deng J; Li N; Chu X; Liu Y; Li W; Cai H; Xiu P; Zhang Y; Guan Z; Zheng Y; Kou Y; Jiang B; Chen R ACS Appl Mater Interfaces; 2018 Feb; 10(5):4394-4408. PubMed ID: 29310434 [TBL] [Abstract][Full Text] [Related]
42. Influence of Mg on the mechanical properties and degradation performance of as-extruded ZnMgCa alloys: In vitro and in vivo behavior. Yang L; Guo P; Niu Z; Li F; Song Z; Xu C; Liu H; Sun W; Ren T J Mech Behav Biomed Mater; 2019 Jul; 95():220-231. PubMed ID: 31022667 [TBL] [Abstract][Full Text] [Related]
43. Evaluation of Magnesium-based Medical Devices in Preclinical Studies: Challenges and Points to Consider. Chagnon M; Guy LG; Jackson N Toxicol Pathol; 2019 Apr; 47(3):390-400. PubMed ID: 30712470 [TBL] [Abstract][Full Text] [Related]
44. Effects of Extrusion on Mechanical and Corrosion Resistance Properties of Biomedical Mg-Zn-Nd-xCa Alloys. Lou G; Xu S; Teng X; Ye Z; Jia P; Wu H; Leng J; Zuo M Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934995 [TBL] [Abstract][Full Text] [Related]
45. Titanium and zirconium based alloys modified by intensive plastic deformation and nitrogen ion implantation for biocompatible implants. Byeli AV; Kukareko VA; Kononov AG J Mech Behav Biomed Mater; 2012 Feb; 6():89-94. PubMed ID: 22301177 [TBL] [Abstract][Full Text] [Related]
47. Preparation, structural, microstructural, mechanical, and cytotoxic characterization of Ti-15Nb alloy for biomedical applications. Kuroda PAB; da Silva LM; Sousa KDSJ; Donato TAG; Grandini CR Artif Organs; 2020 Aug; 44(8):811-817. PubMed ID: 31876963 [TBL] [Abstract][Full Text] [Related]
48. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Kannan MB; Raman RK Biomaterials; 2008 May; 29(15):2306-14. PubMed ID: 18313746 [TBL] [Abstract][Full Text] [Related]
49. [Progress of in vivo study on degradable magnesium alloys application as bone-implant materials]. Qi Z; Zhang Q; Yin Y; Wang Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Nov; 26(11):1381-6. PubMed ID: 23230677 [TBL] [Abstract][Full Text] [Related]
50. In vitro interactions of blood, platelet, and fibroblast with biodegradable magnesium-zinc-strontium alloys. Nguyen TY; Cipriano AF; Guan RG; Zhao ZY; Liu H J Biomed Mater Res A; 2015 Sep; 103(9):2974-86. PubMed ID: 25690931 [TBL] [Abstract][Full Text] [Related]
51. Study on the blood compatibility and biodegradation properties of magnesium alloys. Mochizuki A; Kaneda H Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():204-10. PubMed ID: 25492190 [TBL] [Abstract][Full Text] [Related]
52. In vivo performances of pure Zn and Zn-Fe alloy as biodegradable implants. Kafri A; Ovadia S; Yosafovich-Doitch G; Aghion E J Mater Sci Mater Med; 2018 Jun; 29(7):94. PubMed ID: 29938325 [TBL] [Abstract][Full Text] [Related]
53. Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Kraus T; Fischerauer SF; Hänzi AC; Uggowitzer PJ; Löffler JF; Weinberg AM Acta Biomater; 2012 Mar; 8(3):1230-8. PubMed ID: 22107870 [TBL] [Abstract][Full Text] [Related]
54. Comparison of SCAphoid fracture osteosynthesis by MAGnesium-based headless Herbert screws with titanium Herbert screws: protocol for the randomized controlled SCAMAG clinical trial. Könneker S; Krockenberger K; Pieh C; von Falck C; Brandewiede B; Vogt PM; Kirschner MH; Ziegler A BMC Musculoskelet Disord; 2019 Aug; 20(1):357. PubMed ID: 31387574 [TBL] [Abstract][Full Text] [Related]
55. In vitro corrosion behaviour of MA 956 superalloy. Escudero ML; González-Carrasco JL Biomaterials; 1994 Nov; 15(14):1175-80. PubMed ID: 7893921 [TBL] [Abstract][Full Text] [Related]
56. In vivo study of the efficacy, biosafety, and degradation of a zinc alloy osteosynthesis system. Wang X; Shao X; Dai T; Xu F; Zhou JG; Qu G; Tian L; Liu B; Liu Y Acta Biomater; 2019 Jul; 92():351-361. PubMed ID: 31059834 [TBL] [Abstract][Full Text] [Related]
57. Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Bordji K; Jouzeau JY; Mainard D; Payan E; Netter P; Rie KT; Stucky T; Hage-Ali M Biomaterials; 1996 May; 17(9):929-40. PubMed ID: 8718939 [TBL] [Abstract][Full Text] [Related]
58. Prevention of pin tract infection with titanium-copper alloys. Shirai T; Tsuchiya H; Shimizu T; Ohtani K; Zen Y; Tomita K J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):373-80. PubMed ID: 19507137 [TBL] [Abstract][Full Text] [Related]
59. The Prospects for Biodegradable Zinc in Wound Closure Applications. Venezuela JJD; Johnston S; Dargusch MS Adv Healthc Mater; 2019 Aug; 8(16):e1900408. PubMed ID: 31267693 [TBL] [Abstract][Full Text] [Related]
60. [RESEARCH PROGRESS OF MAGNESIUM AND MAGNESIUM ALLOYS IMPLANTS IN ORTHOPEDICS]. Yang J; Xu Y; He X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Dec; 30(12):1562-1566. PubMed ID: 29786352 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]