These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23512279)

  • 1. A nonparametric test to detect quantitative trait loci where the phenotypic distribution differs by genotypes.
    Aschard H; Zaitlen N; Tamimi RM; Lindström S; Kraft P
    Genet Epidemiol; 2013 May; 37(4):323-33. PubMed ID: 23512279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting Gene-Environment Interactions for a Quantitative Trait in a Genome-Wide Association Study.
    Zhang P; Lewinger JP; Conti D; Morrison JL; Gauderman WJ
    Genet Epidemiol; 2016 Jul; 40(5):394-403. PubMed ID: 27230133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of measurement error on testing genetic association with quantitative traits.
    Liao J; Li X; Wong TY; Wang JJ; Khor CC; Tai ES; Aung T; Teo YY; Cheng CY
    PLoS One; 2014; 9(1):e87044. PubMed ID: 24475218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach.
    Guo B; Wu B
    Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Testing for gene-gene interaction with AMMI models.
    Barhdadi A; Dubé MP
    Stat Appl Genet Mol Biol; 2010; 9():Article 2. PubMed ID: 20196752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonparametric evaluation of quantitative traits in population-based association studies when the genetic model is unknown.
    Konietschke F; Libiger O; Hothorn LA
    PLoS One; 2012; 7(2):e31242. PubMed ID: 22363593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The longitudinal nonparametric test as a new tool to explore gene-gene and gene-time effects in cohorts.
    Malzahn D; Schillert A; Müller M; Bickeböller H
    Genet Epidemiol; 2010 Jul; 34(5):469-78. PubMed ID: 20568282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mining of favorable alleles for seed reserve utilization efficiency in Oryza sativa by means of association mapping.
    Ali N; Li D; Eltahawy MS; Abdulmajid D; Bux L; Liu E; Dang X; Hong D
    BMC Genet; 2020 Jan; 21(1):4. PubMed ID: 31948408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retrospective Association Analysis of Longitudinal Binary Traits Identifies Important Loci and Pathways in Cocaine Use.
    Wu W; Wang Z; Xu K; Zhang X; Amei A; Gelernter J; Zhao H; Justice AC; Wang Z
    Genetics; 2019 Dec; 213(4):1225-1236. PubMed ID: 31591132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining dependent F-tests for robust association of quantitative traits under genetic model uncertainty.
    Qu L
    Stat Appl Genet Mol Biol; 2014 Apr; 13(2):123-39. PubMed ID: 24603842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits.
    Crawford L; Zeng P; Mukherjee S; Zhou X
    PLoS Genet; 2017 Jul; 13(7):e1006869. PubMed ID: 28746338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical power in genome-wide association studies and quantitative trait locus mapping.
    Wang M; Xu S
    Heredity (Edinb); 2019 Sep; 123(3):287-306. PubMed ID: 30858595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlations between relatives: From Mendelian theory to complete genome sequence.
    Thompson EA
    Genet Epidemiol; 2019 Jul; 43(5):577-591. PubMed ID: 31045279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General regression model: A "model-free" association test for quantitative traits allowing to test for the underlying genetic model.
    Gloaguen E; Dizier MH; Boissel M; Rocheleau G; Canouil M; Froguel P; Tichet J; Roussel R; ; Julier C; Balkau B; Mathieu F
    Ann Hum Genet; 2020 May; 84(3):280-290. PubMed ID: 31834638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical strategies to include the X-chromosome in variance heterogeneity analyses: Evidence for trait-specific polygenic variance structure.
    Deng WQ; Mao S; Kalnapenkis A; Esko T; Mägi R; Paré G; Sun L
    Genet Epidemiol; 2019 Oct; 43(7):815-830. PubMed ID: 31332826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging phenotypic variability to identify genetic interactions in human phenotypes.
    Marderstein AR; Davenport ER; Kulm S; Van Hout CV; Elemento O; Clark AG
    Am J Hum Genet; 2021 Jan; 108(1):49-67. PubMed ID: 33326753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linkage Disequilibrium and Evaluation of Genome-Wide Association Mapping Models in Tetraploid Potato.
    Sharma SK; MacKenzie K; McLean K; Dale F; Daniels S; Bryan GJ
    G3 (Bethesda); 2018 Oct; 8(10):3185-3202. PubMed ID: 30082329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of gene-based rare variant association mapping methods for quantitative traits in a bovine population with complex familial relationships.
    Zhang Q; Guldbrandtsen B; Calus MP; Lund MS; Sahana G
    Genet Sel Evol; 2016 Aug; 48(1):60. PubMed ID: 27534618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marker-based estimation of heritability in immortal populations.
    Kruijer W; Boer MP; Malosetti M; Flood PJ; Engel B; Kooke R; Keurentjes JJ; van Eeuwijk FA
    Genetics; 2015 Feb; 199(2):379-98. PubMed ID: 25527288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.