These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 23512337)
21. Enhancing surface coverage and growth in layer-by-layer assembly of protein nanoparticles. Mohanta V; Patil S Langmuir; 2013 Oct; 29(43):13123-8. PubMed ID: 23906319 [TBL] [Abstract][Full Text] [Related]
22. Polycationic nanoparticles synthesized using ARGET ATRP for drug delivery. Forbes DC; Creixell M; Frizzell H; Peppas NA Eur J Pharm Biopharm; 2013 Aug; 84(3):472-8. PubMed ID: 23396094 [TBL] [Abstract][Full Text] [Related]
23. Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery. Akinc A; Lynn DM; Anderson DG; Langer R J Am Chem Soc; 2003 May; 125(18):5316-23. PubMed ID: 12720443 [TBL] [Abstract][Full Text] [Related]
24. Amphiphilic block copolymers bearing ortho ester side-chains: pH-dependent hydrolysis and self-assembly in water. Tang R; Ji W; Wang C Macromol Biosci; 2010 Feb; 10(2):192-201. PubMed ID: 19904722 [TBL] [Abstract][Full Text] [Related]
25. The effect of molecular weight, compositions and lectin type on the properties of hyperbranched glycopolymers as non-viral gene delivery systems. Ahmed M; Narain R Biomaterials; 2012 May; 33(15):3990-4001. PubMed ID: 22386601 [TBL] [Abstract][Full Text] [Related]
26. Cyproterone synthesis, recognition and controlled release by molecularly imprinted nanoparticle. Asadi E; Azodi-Deilami S; Abdouss M; Khaghani S Appl Biochem Biotechnol; 2012 Aug; 167(7):2076-87. PubMed ID: 22669687 [TBL] [Abstract][Full Text] [Related]
27. SLN for topical application in skin diseases--characterization of drug-carrier and carrier-target interactions. Küchler S; Herrmann W; Panek-Minkin G; Blaschke T; Zoschke C; Kramer KD; Bittl R; Schäfer-Korting M Int J Pharm; 2010 May; 390(2):225-33. PubMed ID: 20153414 [TBL] [Abstract][Full Text] [Related]
28. Preparation of stable electroneutral nanoparticles of sodium dodecyl sulfate and branched poly(ethylenimine) in the presence of pluronic F108 copolymer. Pojják K; Mészáros R Langmuir; 2011 Dec; 27(24):14797-806. PubMed ID: 22050126 [TBL] [Abstract][Full Text] [Related]
29. Polycation/DNA complexes coated with oligonucleotides for gene delivery. Chung YC; Hsieh WY; Young TH Biomaterials; 2010 May; 31(14):4194-203. PubMed ID: 20163854 [TBL] [Abstract][Full Text] [Related]
30. Characterization of the soluble nanoparticles formed through Coulombic interaction of bovine serum albumin with anionic graft copolymers at low pH. Serefoglou E; Oberdisse J; Staikos G Biomacromolecules; 2007 Apr; 8(4):1195-9. PubMed ID: 17315925 [TBL] [Abstract][Full Text] [Related]
31. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance. Liu Y; Pan J; Feng SS Int J Pharm; 2010 Aug; 395(1-2):243-50. PubMed ID: 20472049 [TBL] [Abstract][Full Text] [Related]
32. Eudragit RL 100-based nanoparticulate system of aceclofenac for ocular delivery. Katara R; Majumdar DK Colloids Surf B Biointerfaces; 2013 Mar; 103():455-62. PubMed ID: 23261566 [TBL] [Abstract][Full Text] [Related]
33. A self-assembled, modular DNA delivery system mediated by silica nanoparticles. Luo D; Han E; Belcheva N; Saltzman WM J Control Release; 2004 Mar; 95(2):333-41. PubMed ID: 14980781 [TBL] [Abstract][Full Text] [Related]
34. Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. Lee SH; Bae KH; Kim SH; Lee KR; Park TG Int J Pharm; 2008 Nov; 364(1):94-101. PubMed ID: 18723087 [TBL] [Abstract][Full Text] [Related]
35. Efficient intracellular delivery of functional proteins using cationic polymer core/shell nanoparticles. Lee AL; Wang Y; Ye WH; Yoon HS; Chan SY; Yang YY Biomaterials; 2008 Mar; 29(9):1224-32. PubMed ID: 18078986 [TBL] [Abstract][Full Text] [Related]
36. Enhanced drug loading on magnetic nanoparticles by layer-by-layer assembly using drug conjugates: blood compatibility evaluation and targeted drug delivery in cancer cells. Manju S; Sreenivasan K Langmuir; 2011 Dec; 27(23):14489-96. PubMed ID: 21988497 [TBL] [Abstract][Full Text] [Related]
37. Self-assembly strategy for the preparation of polymer-based nanoparticles for drug and gene delivery. Chen S; Cheng SX; Zhuo RX Macromol Biosci; 2011 May; 11(5):576-89. PubMed ID: 21188686 [TBL] [Abstract][Full Text] [Related]
38. Formation of biocompatible nanoparticles via the self-assembly of chitosan and modified lecithin. Chuah AM; Kuroiwa T; Ichikawa S; Kobayashi I; Nakajima M J Food Sci; 2009; 74(1):N1-8. PubMed ID: 19200109 [TBL] [Abstract][Full Text] [Related]
39. Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery. Ping Y; Liu C; Zhang Z; Liu KL; Chen J; Li J Biomaterials; 2011 Nov; 32(32):8328-41. PubMed ID: 21840593 [TBL] [Abstract][Full Text] [Related]
40. Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation. Langer K; Anhorn MG; Steinhauser I; Dreis S; Celebi D; Schrickel N; Faust S; Vogel V Int J Pharm; 2008 Jan; 347(1-2):109-17. PubMed ID: 17681686 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]