These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23512408)

  • 1. Quantitative residue-level structure-evolution relationships in the yeast membrane proteome.
    Franzosa EA; Xue R; Xia Y
    Genome Biol Evol; 2013; 5(4):734-44. PubMed ID: 23512408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural determinants of protein evolution are context-sensitive at the residue level.
    Franzosa EA; Xia Y
    Mol Biol Evol; 2009 Oct; 26(10):2387-95. PubMed ID: 19597162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular crowding imposes global constraints on the chemistry and evolution of proteomes.
    Levy ED; De S; Teichmann SA
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20461-6. PubMed ID: 23184996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Determinants of Yeast Protein-Protein Interaction Interface Evolution at the Residue Level.
    Pollet L; Lambourne L; Xia Y
    J Mol Biol; 2022 Oct; 434(19):167750. PubMed ID: 35850298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Impact of Native State Switching on Protein Sequence Evolution.
    Sharir-Ivry A; Xia Y
    Mol Biol Evol; 2017 Jun; 34(6):1378-1390. PubMed ID: 28333346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent exposure imparts similar selective pressures across a range of yeast proteins.
    Conant GC; Stadler PF
    Mol Biol Evol; 2009 May; 26(5):1155-61. PubMed ID: 19233963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural imperatives impose diverse evolutionary constraints on helical membrane proteins.
    Oberai A; Joh NH; Pettit FK; Bowie JU
    Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17747-50. PubMed ID: 19815527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-guided Evolutionary Analysis of Interactome Network Rewiring at Single Residue Resolution in Yeasts.
    Pollet L; Xia Y
    J Mol Biol; 2024 Aug; 436(16):168641. PubMed ID: 38844045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Independent effects of protein core size and expression on residue-level structure-evolution relationships.
    Franzosa EA; Xia Y
    PLoS One; 2012; 7(10):e46602. PubMed ID: 23056364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. No simple dependence between protein evolution rate and the number of protein-protein interactions: only the most prolific interactors tend to evolve slowly.
    Jordan IK; Wolf YI; Koonin EV
    BMC Evol Biol; 2003 Jan; 3():1. PubMed ID: 12515583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins.
    Adamian L; Liang J
    J Mol Biol; 2001 Aug; 311(4):891-907. PubMed ID: 11518538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Interaction Homology: Deconstructing Residue-Residue and Residue-Lipid Interactions in Membrane Proteins.
    Kellogg GE
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane environment imposes unique selection pressures on transmembrane domains of G protein-coupled receptors.
    Spielman SJ; Wilke CO
    J Mol Evol; 2013 Mar; 76(3):172-82. PubMed ID: 23355009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissection of the water cavity of yeast thioredoxin 1: the effect of a hydrophobic residue in the cavity.
    Iqbal A; Gomes-Neto F; Myiamoto CA; Valente AP; Almeida FC
    Biochemistry; 2015 Apr; 54(15):2429-42. PubMed ID: 25830254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do amino acid biosynthetic costs constrain protein evolution in Saccharomyces cerevisiae?
    Raiford DW; Heizer EM; Miller RV; Akashi H; Raymer ML; Krane DE
    J Mol Evol; 2008 Dec; 67(6):621-30. PubMed ID: 18937004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proportion of solvent-exposed amino acids in a protein and rate of protein evolution.
    Lin YS; Hsu WL; Hwang JK; Li WH
    Mol Biol Evol; 2007 Apr; 24(4):1005-11. PubMed ID: 17264066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between relative solvent accessibility and evolutionary rate in protein evolution.
    Ramsey DC; Scherrer MP; Zhou T; Wilke CO
    Genetics; 2011 Jun; 188(2):479-88. PubMed ID: 21467571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmembrane topology of the arsenite permease Acr3 from Saccharomyces cerevisiae.
    Wawrzycka D; Markowska K; Maciaszczyk-Dziubinska E; Migocka M; Wysocki R
    Biochim Biophys Acta Biomembr; 2017 Jan; 1859(1):117-125. PubMed ID: 27836640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of transmembrane helix integration in the endoplasmic reticulum in S. cerevisiae.
    Hessa T; Reithinger JH; von Heijne G; Kim H
    J Mol Biol; 2009 Mar; 386(5):1222-8. PubMed ID: 19452628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural mapping of protein interactions reveals differences in evolutionary pressures correlated to mRNA level and protein abundance.
    Eames M; Kortemme T
    Structure; 2007 Nov; 15(11):1442-51. PubMed ID: 17997970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.