These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23512408)

  • 21. Evolution of budding yeast prion-determinant sequences across diverse fungi.
    Harrison LB; Yu Z; Stajich JE; Dietrich FS; Harrison PM
    J Mol Biol; 2007 Apr; 368(1):273-82. PubMed ID: 17320905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of an evolutionary conserved SURF-6 domain in a family of nucleolar proteins extending from human to yeast.
    Polzikov M; Zatsepina O; Magoulas C
    Biochem Biophys Res Commun; 2005 Feb; 327(1):143-9. PubMed ID: 15629442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs.
    Beckmann BM; Horos R; Fischer B; Castello A; Eichelbaum K; Alleaume AM; Schwarzl T; Curk T; Foehr S; Huber W; Krijgsveld J; Hentze MW
    Nat Commun; 2015 Dec; 6():10127. PubMed ID: 26632259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A transmembrane serine residue in the Rot1 protein is essential for yeast cell viability.
    Martínez-Garay CA; Juanes MA; Igual JC; Mingarro I; Bañó MC
    Biochem J; 2014 Mar; 458(2):239-49. PubMed ID: 24303792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochemical characterization, membrane association and identification of amino acids essential for the function of Alg11 from Saccharomyces cerevisiae, an alpha1,2-mannosyltransferase catalysing two sequential glycosylation steps in the formation of the lipid-linked core oligosaccharide.
    Absmanner B; Schmeiser V; Kämpf M; Lehle L
    Biochem J; 2010 Feb; 426(2):205-17. PubMed ID: 19929855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolution and adaptation of single-pass transmembrane proteins.
    Pogozheva ID; Lomize AL
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):364-377. PubMed ID: 29129605
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep mutational scanning of an RRM domain of the Saccharomyces cerevisiae poly(A)-binding protein.
    Melamed D; Young DL; Gamble CE; Miller CR; Fields S
    RNA; 2013 Nov; 19(11):1537-51. PubMed ID: 24064791
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Residue Geometry Networks: A Rigidity-Based Approach to the Amino Acid Network and Evolutionary Rate Analysis.
    Fokas AS; Cole DJ; Ahnert SE; Chin AW
    Sci Rep; 2016 Sep; 6():33213. PubMed ID: 27623708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequence-specific dimerization of the transmembrane domain of the "BH3-only" protein BNIP3 in membranes and detergent.
    Sulistijo ES; Jaszewski TM; MacKenzie KR
    J Biol Chem; 2003 Dec; 278(51):51950-6. PubMed ID: 14532263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Melting temperature highlights functionally important RNA structure and sequence elements in yeast mRNA coding regions.
    Qi F; Frishman D
    Nucleic Acids Res; 2017 Jun; 45(10):6109-6118. PubMed ID: 28335026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural mechanism for sterol sensing and transport by OSBP-related proteins.
    Im YJ; Raychaudhuri S; Prinz WA; Hurley JH
    Nature; 2005 Sep; 437(7055):154-8. PubMed ID: 16136145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D interaction homology: The hydrophobic residues alanine, isoleucine, leucine, proline and valine play different structural roles in soluble and membrane proteins.
    Al Mughram MH; Catalano C; Herrington NB; Safo MK; Kellogg GE
    Front Mol Biosci; 2023; 10():1116868. PubMed ID: 37056722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Statistical analysis and exposure status classification of transmembrane beta barrel residues.
    Hayat S; Park Y; Helms V
    Comput Biol Chem; 2011 Apr; 35(2):96-107. PubMed ID: 21531175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural determinants of the rate of protein evolution in yeast.
    Bloom JD; Drummond DA; Arnold FH; Wilke CO
    Mol Biol Evol; 2006 Sep; 23(9):1751-61. PubMed ID: 16782762
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A eukaryotic carboxyl-terminal signal sequence translocating large hydrophilic domains across membranes.
    Zhong X; Malhotra R; Guidotti G
    FEBS Lett; 2005 Oct; 579(25):5643-50. PubMed ID: 16214140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The control of transmembrane helix transverse position in membranes by hydrophilic residues.
    Krishnakumar SS; London E
    J Mol Biol; 2007 Dec; 374(5):1251-69. PubMed ID: 17997412
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unseen proteome: mining below the tip of the iceberg to find low abundance and membrane proteins.
    Pedersen SK; Harry JL; Sebastian L; Baker J; Traini MD; McCarthy JT; Manoharan A; Wilkins MR; Gooley AA; Righetti PG; Packer NH; Williams KL; Herbert BR
    J Proteome Res; 2003; 2(3):303-11. PubMed ID: 12814269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The coordinated evolution of yeast proteins is constrained by functional modularity.
    Chen Y; Dokholyan NV
    Trends Genet; 2006 Aug; 22(8):416-9. PubMed ID: 16797778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Topological and mutational analysis of Saccharomyces cerevisiae Fks1.
    Johnson ME; Edlind TD
    Eukaryot Cell; 2012 Jul; 11(7):952-60. PubMed ID: 22581527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolutionary constraints on yeast protein size.
    Warringer J; Blomberg A
    BMC Evol Biol; 2006 Aug; 6():61. PubMed ID: 16911784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.