These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 23512790)

  • 1. An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature.
    Wang ZL; Yan JM; Ping Y; Wang HL; Zheng WT; Jiang Q
    Angew Chem Int Ed Engl; 2013 Apr; 52(16):4406-9. PubMed ID: 23512790
    [No Abstract]   [Full Text] [Related]  

  • 2. DNA-directed growth of ultrafine CoAuPd nanoparticles on graphene as efficient catalysts for formic acid dehydrogenation.
    Wang ZL; Wang HL; Yan JM; Ping Y; O SI; Li SJ; Jiang Q
    Chem Commun (Camb); 2014 Mar; 50(21):2732-4. PubMed ID: 24473636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved hydrogen production from formic acid on a Pd/C catalyst doped by potassium.
    Bulushev DA; Jia L; Beloshapkin S; Ross JR
    Chem Commun (Camb); 2012 May; 48(35):4184-6. PubMed ID: 22447125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Available hydrogen from formic acid decomposed by rare earth elements promoted Pd-Au/C catalysts at low temperature.
    Zhou X; Huang Y; Liu C; Liao J; Lu T; Xing W
    ChemSusChem; 2010 Dec; 3(12):1379-82. PubMed ID: 21064176
    [No Abstract]   [Full Text] [Related]  

  • 5. Facile synthesis of nitrogen-doped graphene supported AuPd-CeO2 nanocomposites with high-performance for hydrogen generation from formic acid at room temperature.
    Wang ZL; Yan JM; Zhang YF; Ping Y; Wang HL; Jiang Q
    Nanoscale; 2014 Mar; 6(6):3073-7. PubMed ID: 24526095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions.
    Metin Ö; Sun X; Sun S
    Nanoscale; 2013 Feb; 5(3):910-2. PubMed ID: 23254519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient PdNi and PdNi@Pd-catalyzed hydrogen generation via formic acid decomposition at room temperature.
    Qin YL; Wang J; Meng FZ; Wang LM; Zhang XB
    Chem Commun (Camb); 2013 Nov; 49(85):10028-30. PubMed ID: 24045900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The size-controlled synthesis of Pd/C catalysts by different solvents for formic acid electrooxidation.
    Huang Y; Liao J; Liu C; Lu T; Xing W
    Nanotechnology; 2009 Mar; 20(10):105604. PubMed ID: 19417524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites.
    Wang L; Zhang B; Meng X; Su DS; Xiao FS
    ChemSusChem; 2014 Jun; 7(6):1537-41. PubMed ID: 24861954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.
    Wang F; Xu J; Shao X; Su X; Huang Y; Zhang T
    ChemSusChem; 2016 Feb; 9(3):246-51. PubMed ID: 26763714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen production by dehydrogenation of formic acid on atomically dispersed gold on ceria.
    Yi N; Saltsburg H; Flytzani-Stephanopoulos M
    ChemSusChem; 2013 May; 6(5):816-9. PubMed ID: 23532971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodechlorination of 4-chlorophenol in water with formic acid using a Pd/activated carbon catalyst.
    Calvo L; Gilarranz MA; Casas JA; Mohedano AF; Rodríguez JJ
    J Hazard Mater; 2009 Jan; 161(2-3):842-7. PubMed ID: 18502041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst.
    Preti D; Resta C; Squarcialupi S; Fachinetti G
    Angew Chem Int Ed Engl; 2011 Dec; 50(52):12551-4. PubMed ID: 22057843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors Influencing the Performance of Pd/C Catalysts in the Green Production of Hydrogen from Formic Acid.
    Zacharska M; Bulusheva LG; Lisitsyn AS; Beloshapkin S; Guo Y; Chuvilin AL; Shlyakhova EV; Podyacheva OY; Leahy JJ; Okotrub AV; Bulushev DA
    ChemSusChem; 2017 Feb; 10(4):720-730. PubMed ID: 27996206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of Pd-Co-based nanocatalysts and their superior applications in formic acid decomposition and methanol oxidation.
    Qin YL; Liu YC; Liang F; Wang LM
    ChemSusChem; 2015 Jan; 8(2):260-3. PubMed ID: 25504901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formic acid-assisted synthesis of palladium nanocrystals and their electrocatalytic properties.
    Wang Q; Wang Y; Guo P; Li Q; Ding R; Wang B; Li H; Liu J; Zhao XS
    Langmuir; 2014 Jan; 30(1):440-6. PubMed ID: 24369065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct synthesis of 1,6-hexanediol from HMF over a heterogeneous Pd/ZrP catalyst using formic acid as hydrogen source.
    Tuteja J; Choudhary H; Nishimura S; Ebitani K
    ChemSusChem; 2014 Jan; 7(1):96-100. PubMed ID: 24259303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of formic acid as reducing agent for application in catalytic reduction of nitrate in water.
    Garron A; Epron F
    Water Res; 2005 Aug; 39(13):3073-81. PubMed ID: 15982701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts.
    Su J; Yang L; Lu M; Lin H
    ChemSusChem; 2015 Mar; 8(5):813-6. PubMed ID: 25663262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles.
    Sun D; Mazumder V; Metin Ö; Sun S
    ACS Nano; 2011 Aug; 5(8):6458-64. PubMed ID: 21766875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.