BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23513440)

  • 1. Carbonaceous and nitrogenous disinfection by-product formation in the surface and ground water treatment plants using Yellow River as water source.
    Hou Y; Chu W; Ma M
    J Environ Sci (China); 2012; 24(7):1204-9. PubMed ID: 23513440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of nitrogenous disinfection by-products from pre-chloramination.
    Chu WH; Gao NY; Deng Y; Templeton MR; Yin DQ
    Chemosphere; 2011 Nov; 85(7):1187-91. PubMed ID: 21820695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Derivates variation of phenylalanine as a model disinfection by-product precursor during long term chlorination and chloramination.
    Zhou K; Ye S; Yu Q; Chen J; Yong P; Ma X; Li Q; Dietrich AM
    Sci Total Environ; 2021 Jun; 771():144885. PubMed ID: 33736131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The enhanced removal of carbonaceous and nitrogenous disinfection by-product precursors using integrated permanganate oxidation and powdered activated carbon adsorption pretreatment.
    Chu W; Yao D; Gao N; Bond T; Templeton MR
    Chemosphere; 2015 Dec; 141():1-6. PubMed ID: 26065622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity.
    Zhang Y; Chu W; Yao D; Yin D
    J Environ Sci (China); 2017 Aug; 58():322-330. PubMed ID: 28774623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Pre-Oxidation on Haloacetonitrile and Trichloronitromethane Formation during Subsequent Chlorination of Nitrogenous Organic Compounds.
    Wang A; Lin C; Shen Z; Liu Z; Xu H; Cheng J; Wen X
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32045988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and control of nitrogenous DBPs from Western Australian source waters: Investigating the impacts of high nitrogen and bromide concentrations.
    Kristiana I; Liew D; Henderson RK; Joll CA; Linge KL
    J Environ Sci (China); 2017 Aug; 58():102-115. PubMed ID: 28774599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of different types of nitrogen sources in water on the formation potentials of nitrogenous disinfection by-products in chloramine disinfection process based on isotope labeling.
    Zhang H; Gao P; Liu Y; Du Z; Feng L; Zhang L
    Sci Total Environ; 2022 Oct; 842():156692. PubMed ID: 35752235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting the formation of disinfection by-products during chlorination and chloramination of secondary effluent for the production of high quality recycled water.
    Doederer K; Gernjak W; Weinberg HS; Farré MJ
    Water Res; 2014 Jan; 48():218-28. PubMed ID: 24095593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation and occurrence of new polar iodinated disinfection byproducts in drinking water.
    Pan Y; Li W; An H; Cui H; Wang Y
    Chemosphere; 2016 Feb; 144():2312-20. PubMed ID: 26606185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation characteristics of carbonaceous and nitrogenous disinfection by-products depending on residual organic compounds by CGS and DAF.
    Maeng M; Shahi NK; Shin G; Son H; Kwak D; Dockko S
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34008-34017. PubMed ID: 30209770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of water chemistry on disinfection by-product formation in the complex surface water system.
    Hao R; Zhang Y; Du T; Yang L; Adeleye AS; Li Y
    Chemosphere; 2017 Apr; 172():384-391. PubMed ID: 28088529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of inclined plate sedimentation and dissolved air flotation for the minimisation of subsequent nitrogenous disinfection by-product formation.
    Chu WH; Gao NY; Templeton MR; Yin DQ
    Chemosphere; 2011 Apr; 83(5):647-51. PubMed ID: 21420143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of changes in source water quality on trihalomethane and haloacetonitrile formation in chlorinated drinking water.
    Xue C; Wang Q; Chu W; Templeton MR
    Chemosphere; 2014 Dec; 117():251-5. PubMed ID: 25104649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of drinking water pretreatments on the formation of nitrogenous disinfection by-products.
    Chu W; Gao N; Deng Y; Templeton MR; Yin D
    Bioresour Technol; 2011 Dec; 102(24):11161-6. PubMed ID: 22014706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Formation of Disinfection By-Products During Chlor(am)ination of Danjiangkou Reservoir Water and Comparison of Disinfection Processes].
    Zhang MS; Xu B; Zhang TY; Cheng T; Xia SJ; Chu WH
    Huan Jing Ke Xue; 2015 Sep; 36(9):3278-84. PubMed ID: 26717688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems.
    Liew D; Linge KL; Joll CA
    Environ Monit Assess; 2016 Sep; 188(9):518. PubMed ID: 27523603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbonaceous and nitrogenous disinfection by-product formation from algal organic matter.
    Goslan EH; Seigle C; Purcell D; Henderson R; Parsons SA; Jefferson B; Judd SJ
    Chemosphere; 2017 Mar; 170():1-9. PubMed ID: 27951445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of ClO
    Yao D; Chu W; Bond T; Ding S; Chen S
    Chemosphere; 2018 Apr; 196():25-34. PubMed ID: 29289848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.