These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 23513676)
1. Removal of dispersant-stabilized carbon nanotubes by regular coagulants. Liu N; Liu C; Zhang J; Lin D J Environ Sci (China); 2012; 24(8):1364-70. PubMed ID: 23513676 [TBL] [Abstract][Full Text] [Related]
2. Coagulation removal of humic acid-stabilized carbon nanotubes from water by PACl: influences of hydraulic condition and water chemistry. Ma S; Liu C; Yang K; Lin D Sci Total Environ; 2012 Nov; 439():123-8. PubMed ID: 23063917 [TBL] [Abstract][Full Text] [Related]
3. Coagulation/flocculation of dye-containing solutions using polyaluminium chloride and alum. Zonoozi MH; Moghaddam MR; Arami M Water Sci Technol; 2009; 59(7):1343-51. PubMed ID: 19381000 [TBL] [Abstract][Full Text] [Related]
4. Breakage and regrowth of flocs formed by sweep coagulation using additional coagulant of poly aluminium chloride and non-ionic polyacrylamide. Nan J; Yao M; Chen T; Li S; Wang Z; Feng G Environ Sci Pollut Res Int; 2016 Aug; 23(16):16336-48. PubMed ID: 27155836 [TBL] [Abstract][Full Text] [Related]
5. Floc morphology and cyclic shearing recovery: comparison of alum and polyaluminum chloride coagulants. McCurdy K; Carlson K; Gregory D Water Res; 2004 Jan; 38(2):486-94. PubMed ID: 14675661 [TBL] [Abstract][Full Text] [Related]
6. Comparison of coagulation pretreatment of produced water from natural gas well by polyaluminium chloride and polyferric sulphate coagulants. Zhai J; Huang Z; Rahaman MH; Li Y; Mei L; Ma H; Hu X; Xiao H; Luo Z; Wang K Environ Technol; 2017 May; 38(10):1200-1210. PubMed ID: 27460889 [TBL] [Abstract][Full Text] [Related]
7. [Influencing factors and mechanism of arsenic removal during the aluminum coagulation process]. Chen GX; Hu CZ; Zhu LF; Tong HQ Huan Jing Ke Xue; 2013 Apr; 34(4):1386-91. PubMed ID: 23798119 [TBL] [Abstract][Full Text] [Related]
8. [Relationship among coagulation effect of Al-based coagulant, content and speciation of residual aluminum]. Yang ZL; Gao BY; Yue QY; Jiang YS Huan Jing Ke Xue; 2010 Jun; 31(6):1542-7. PubMed ID: 20698270 [TBL] [Abstract][Full Text] [Related]
9. Application of psyllium husk as coagulant and coagulant aid in semi-aerobic landfill leachate treatment. Al-Hamadani YA; Yusoff MS; Umar M; Bashir MJ; Adlan MN J Hazard Mater; 2011 Jun; 190(1-3):582-7. PubMed ID: 21507572 [TBL] [Abstract][Full Text] [Related]
10. Investigating the coagulation of non-proteinaceous algal organic matter: Optimizing coagulation performance and identification of removal mechanisms. Naceradska J; Novotna K; Cermakova L; Cajthaml T; Pivokonsky M J Environ Sci (China); 2019 May; 79():25-34. PubMed ID: 30784448 [TBL] [Abstract][Full Text] [Related]
11. Chemical coagulation of greywater: modelling using artificial neural networks. Vinitha EV; Mansoor Ahammed M; Gadekar MR Water Sci Technol; 2018 Jul; 2017(3):869-877. PubMed ID: 30016304 [TBL] [Abstract][Full Text] [Related]
12. A comparative study on the efficiency of ozonation and coagulation-flocculation as pretreatment to activated carbon adsorption of biologically stabilized landfill leachate. Oloibiri V; Ufomba I; Chys M; Audenaert WT; Demeestere K; Van Hulle SW Waste Manag; 2015 Sep; 43():335-42. PubMed ID: 26117422 [TBL] [Abstract][Full Text] [Related]
13. Colloidal silica removal in coagulation processes for wastewater reuse in a high-tech industrial park. Chuang SH; Chang TC; Ouyang CF; Leu JM Water Sci Technol; 2007; 55(1-2):187-95. PubMed ID: 17305139 [TBL] [Abstract][Full Text] [Related]
14. [Comparison study of enhanced coagulation on humic acid and fulvic acid removal]. Zhou LL; Zhang YJ; Ye HX; Zhang YQ Huan Jing Ke Xue; 2012 Aug; 33(8):2680-4. PubMed ID: 23213890 [TBL] [Abstract][Full Text] [Related]
15. The coagulation characteristics of humic acid by using acid-soluble chitosan, water-soluble chitosan, and chitosan coagulant mixtures. Chen CY; Wu CY; Chung YC Environ Technol; 2015; 36(9-12):1141-6. PubMed ID: 25362971 [TBL] [Abstract][Full Text] [Related]
16. Removal of arsenic and natural organic matter from groundwater using ferric and alum salts: a case study of central Banat region (Serbia). Tubić A; Agbaba J; Dalmacija B; Ivancev-Tumbas I; Dalmacija M J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(3):363-9. PubMed ID: 20390878 [TBL] [Abstract][Full Text] [Related]
17. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants. Kimura M; Matsui Y; Kondo K; Ishikawa TB; Matsushita T; Shirasaki N Water Res; 2013 Apr; 47(6):2075-84. PubMed ID: 23422138 [TBL] [Abstract][Full Text] [Related]
18. Return sludge employed in enhancement of color removal in the integrally industrial wastewater treatment plant. Liu SS; Liang TT Water Res; 2004 Jan; 38(1):103-10. PubMed ID: 14630108 [TBL] [Abstract][Full Text] [Related]
19. The application of novel coagulant reagent (polyaluminium silicate chloride) for the post-treatment of landfill leachates. Tzoupanos ND; Zouboulis AI; Zhao YC Chemosphere; 2008 Oct; 73(5):729-36. PubMed ID: 18678391 [TBL] [Abstract][Full Text] [Related]
20. Application of response surface methodology (RSM) to optimize coagulation-flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. Ghafari S; Aziz HA; Isa MH; Zinatizadeh AA J Hazard Mater; 2009 Apr; 163(2-3):650-6. PubMed ID: 18771848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]