These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 23513987)
1. Experimental validation of numerically predicted strain and micromotion in intact and implanted composite hemi-pelvises. Ghosh R; Gupta S; Dickinson A; Browne M Proc Inst Mech Eng H; 2013 Feb; 227(2):162-74. PubMed ID: 23513987 [TBL] [Abstract][Full Text] [Related]
2. Experimental validation of finite element models of intact and implanted composite hemipelvises using digital image correlation. Ghosh R; Gupta S; Dickinson A; Browne M J Biomech Eng; 2012 Aug; 134(8):081003. PubMed ID: 22938356 [TBL] [Abstract][Full Text] [Related]
3. Bone remodelling around uncemented metallic and ceramic acetabular components. Ghosh R; Mukherjee K; Gupta S Proc Inst Mech Eng H; 2013 May; 227(5):490-502. PubMed ID: 23637259 [TBL] [Abstract][Full Text] [Related]
4. Strain and micromotion in intact and resurfaced composite femurs: experimental and numerical investigations. Pal B; Gupta S; New AM; Browne M J Biomech; 2010 Jul; 43(10):1923-30. PubMed ID: 20392448 [TBL] [Abstract][Full Text] [Related]
5. Prediction of micromotion initiation of an implanted femur under physiological loads and constraints using the finite element method. Andreaus U; Colloca M Proc Inst Mech Eng H; 2009 Jul; 223(5):589-605. PubMed ID: 19623912 [TBL] [Abstract][Full Text] [Related]
6. The effects of musculoskeletal loading regimes on numerical evaluations of acetabular component. Mukherjee K; Gupta S Proc Inst Mech Eng H; 2016 Oct; 230(10):918-29. PubMed ID: 27475907 [TBL] [Abstract][Full Text] [Related]
7. Basic considerations for determining the amount of press fit in acetabular cup endoprostheses as a function of the elastic bone behavior. Winter W; Karl M Biomed Tech (Berl); 2014 Oct; 59(5):413-20. PubMed ID: 24937501 [TBL] [Abstract][Full Text] [Related]
8. The effect of under-reaming on the cup/bone interface of a press fit hip replacement. Zivkovic I; Gonzalez M; Amirouche F J Biomech Eng; 2010 Apr; 132(4):041008. PubMed ID: 20387971 [TBL] [Abstract][Full Text] [Related]
9. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model. Hao Z; Wan C; Gao X; Ji T J Biomech Eng; 2011 Oct; 133(10):101006. PubMed ID: 22070331 [TBL] [Abstract][Full Text] [Related]
10. Experimental validation of a finite element model of a human cadaveric tibia. Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865 [TBL] [Abstract][Full Text] [Related]
11. Validation of FE micromotions and strains around a press-fit cup: introducing a new micromotion measuring technique. Clarke SG; Phillips AT; Bull AM Ann Biomed Eng; 2012 Jul; 40(7):1586-96. PubMed ID: 22350664 [TBL] [Abstract][Full Text] [Related]
12. The role of muscle forces and gait cycle discretization when assessing acetabular cup primary stability: A finite element study. Fallahnezhad K; O'Rourke D; Bahl JS; Thewlis D; Taylor M Comput Methods Programs Biomed; 2023 Mar; 230():107351. PubMed ID: 36709556 [TBL] [Abstract][Full Text] [Related]
13. Effects of prosthetic acetabular replacement on strains in the pelvis. Lionberger D; Walker PS; Granholm J J Orthop Res; 1985; 3(3):372-9. PubMed ID: 4032108 [TBL] [Abstract][Full Text] [Related]
14. Effects of acetabular resurfacing component material and fixation on the strain distribution in the pelvis. Thompson MS; Northmore-Ball MD; Tanner KE Proc Inst Mech Eng H; 2002; 216(4):237-45. PubMed ID: 12206520 [TBL] [Abstract][Full Text] [Related]
15. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
16. Loss in mechanical contact of cementless acetabular prostheses due to post-operative weight bearing: a biomechanical model. Bellini CM; Galbusera F; Ceroni RG; Raimondi MT Med Eng Phys; 2007 Mar; 29(2):175-81. PubMed ID: 16569508 [TBL] [Abstract][Full Text] [Related]
17. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. Anderson AE; Peters CL; Tuttle BD; Weiss JA J Biomech Eng; 2005 Jun; 127(3):364-73. PubMed ID: 16060343 [TBL] [Abstract][Full Text] [Related]
18. The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups--finite element simulations and experimental tests. Korhonen RK; Koistinen A; Konttinen YT; Santavirta SS; Lappalainen R Biomed Eng Online; 2005 May; 4():32. PubMed ID: 15904521 [TBL] [Abstract][Full Text] [Related]
19. The influence of acetabular bone cracks in the press-fit hip replacement: Numerical and experimental analysis. Ramos A; Duarte RJ; Relvas C; Completo A; Simões JA Clin Biomech (Bristol); 2013 Jul; 28(6):635-41. PubMed ID: 23810509 [TBL] [Abstract][Full Text] [Related]
20. The influence of acetabular cup material on pelvis cortex surface strains, measured using digital image correlation. Dickinson AS; Taylor AC; Browne M J Biomech; 2012 Feb; 45(4):719-23. PubMed ID: 22236529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]