BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23514103)

  • 21. Local definition of Ty1 target preference by long terminal repeats and clustered tRNA genes.
    Bachman N; Eby Y; Boeke JD
    Genome Res; 2004 Jul; 14(7):1232-47. PubMed ID: 15197163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Beneficial and detrimental effects of human endogenous retroviruses.
    Kurth R; Bannert N
    Int J Cancer; 2010 Jan; 126(2):306-14. PubMed ID: 19795446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient screening of long terminal repeat retrotransposons that show high insertion polymorphism via high-throughput sequencing of the primer binding site.
    Monden Y; Fujii N; Yamaguchi K; Ikeo K; Nakazawa Y; Waki T; Hirashima K; Uchimura Y; Tahara M
    Genome; 2014 May; 57(5):245-52. PubMed ID: 25072847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula.
    Tadege M; Wen J; He J; Tu H; Kwak Y; Eschstruth A; Cayrel A; Endre G; Zhao PX; Chabaud M; Ratet P; Mysore KS
    Plant J; 2008 Apr; 54(2):335-47. PubMed ID: 18208518
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ty1 insertions in intergenic regions of the genome of Saccharomyces cerevisiae transcribed by RNA polymerase III have no detectable selective effect.
    Blanc VM; Adams J
    FEMS Yeast Res; 2004 Jan; 4(4-5):487-91. PubMed ID: 14734029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Establishment of a Lotus japonicus gene tagging population using the exon-targeting endogenous retrotransposon LORE1.
    Fukai E; Soyano T; Umehara Y; Nakayama S; Hirakawa H; Tabata S; Sato S; Hayashi M
    Plant J; 2012 Feb; 69(4):720-30. PubMed ID: 22014259
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HIV retrotransposon activity and the immunopathogenesis of AIDS.
    Johnson EJ; Sizemore RC; Gottlieb AA
    Trends Microbiol; 1995 Mar; 3(3):115-7. PubMed ID: 7773589
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomic deletions created upon LINE-1 retrotransposition.
    Gilbert N; Lutz-Prigge S; Moran JV
    Cell; 2002 Aug; 110(3):315-25. PubMed ID: 12176319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-throughput sequencing of retrotransposon integration provides a saturated profile of target activity in Schizosaccharomyces pombe.
    Guo Y; Levin HL
    Genome Res; 2010 Feb; 20(2):239-48. PubMed ID: 20040583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupling of enhancer and insulator properties identified in two retrotransposons modulates their mutagenic impact on nearby genes.
    Conte C; Dastugue B; Vaury C
    Mol Cell Biol; 2002 Mar; 22(6):1767-77. PubMed ID: 11865056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular archeology of L1 insertions in the human genome.
    Szak ST; Pickeral OK; Makalowski W; Boguski MS; Landsman D; Boeke JD
    Genome Biol; 2002 Sep; 3(10):research0052. PubMed ID: 12372140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Plant retrotransposons and their application].
    Chen ZW; Wu WR
    Yi Chuan; 2004 Jan; 26(1):122-6. PubMed ID: 15626680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compilation and analysis of group II intron insertions in bacterial genomes: evidence for retroelement behavior.
    Dai L; Zimmerly S
    Nucleic Acids Res; 2002 Mar; 30(5):1091-102. PubMed ID: 11861899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide characterization of nonreference transposons reveals evolutionary propensities of transposons in soybean.
    Tian Z; Zhao M; She M; Du J; Cannon SB; Liu X; Xu X; Qi X; Li MW; Lam HM; Ma J
    Plant Cell; 2012 Nov; 24(11):4422-36. PubMed ID: 23175746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insertional mutagenesis of Brachypodium distachyon using the Tnt1 retrotransposable element.
    Nandety RS; Serrani-Yarce JC; Gill US; Oh S; Lee HK; Zhang X; Dai X; Zhang W; Krom N; Wen J; Zhao PX; Mysore KS
    Plant J; 2020 Aug; 103(5):1924-1936. PubMed ID: 32410353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-throughput insertional mutagenesis screens in mice to identify oncogenic networks.
    Kool J; Berns A
    Nat Rev Cancer; 2009 Jun; 9(6):389-99. PubMed ID: 19461666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Local mutagenic impact of insertions of LTR retrotransposons on the mouse genome.
    Desmarais E; Belkhir K; Garza JC; Bonhomme F
    J Mol Evol; 2006 Nov; 63(5):662-75. PubMed ID: 17075698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The R2 mobile element of Rhynchosciara americana: molecular, cytological and dynamic aspects.
    Rezende-Teixeira P; Siviero F; da Costa Rosa M; Machado-Santelli GM
    Chromosome Res; 2009; 17(4):455-67. PubMed ID: 19350401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clonal expansion analysis of transposon insertions by high-throughput sequencing identifies candidate cancer genes in a PiggyBac mutagenesis screen.
    Friedel RH; Friedel CC; Bonfert T; Shi R; Rad R; Soriano P
    PLoS One; 2013; 8(8):e72338. PubMed ID: 23940809
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Retrotransposon insertional polymorphism in Iranian bread wheat cultivars and breeding lines revealed by IRAP and REMAP markers.
    Nasri S; Abdollahi Mandoulakani B; Darvishzadeh R; Bernousi I
    Biochem Genet; 2013 Dec; 51(11-12):927-43. PubMed ID: 23839088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.