These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 23514166)

  • 41. Protein association with circular DNA: rate enhancement by nonspecific binding.
    Alsallaq R; Zhou HX
    J Chem Phys; 2008 Mar; 128(11):115108. PubMed ID: 18361623
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular dynamics simulations of silica nanoparticles grafted with poly(ethylene oxide) oligomer chains.
    Hong B; Panagiotopoulos AZ
    J Phys Chem B; 2012 Mar; 116(8):2385-95. PubMed ID: 22243140
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modeling the separation of macromolecules: a review of current computer simulation methods.
    Slater GW; Holm C; Chubynsky MV; de Haan HW; Dubé A; Grass K; Hickey OA; Kingsburry C; Sean D; Shendruk TN; Zhan L
    Electrophoresis; 2009 Mar; 30(5):792-818. PubMed ID: 19260004
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrophoretic motion of a charged porous sphere within micro- and nanochannels.
    Huang CH; Hsu HP; Lee E
    Phys Chem Chem Phys; 2012 Jan; 14(2):657-67. PubMed ID: 22089929
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Physicochemical and transfection properties of cationic Hydroxyethylcellulose/DNA nanoparticles.
    Fayazpour F; Lucas B; Alvarez-Lorenzo C; Sanders NN; Demeester J; De Smedt SC
    Biomacromolecules; 2006 Oct; 7(10):2856-62. PubMed ID: 17025362
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Generic technique to generate large branched DNA complexes.
    Tosch P; Wälti C; Middelberg AP; Davies AG
    Biomacromolecules; 2006 Mar; 7(3):677-81. PubMed ID: 16529398
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transport and separation of charged macromolecules under nonlinear electromigration in nanochannels.
    Das S; Chakraborty S
    Langmuir; 2008 Aug; 24(15):7704-10. PubMed ID: 18620440
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic electro-optic properties of macromolecules and nanoparticles in solution: a review of computational and simulation methodologies.
    García de la Torre J
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):4-15. PubMed ID: 17125977
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tuneable elastomeric nanochannels for nanofluidic manipulation.
    Huh D; Mills KL; Zhu X; Burns MA; Thouless MD; Takayama S
    Nat Mater; 2007 Jun; 6(6):424-8. PubMed ID: 17486084
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Asymmetric bridging of interconnected pores by encased semiflexible macromolecules.
    Cifra P
    J Chem Phys; 2006 Jan; 124(2):024706. PubMed ID: 16422625
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A silica nanochannel and its applications in sensing and molecular transport.
    Zhang B; Wood M; Lee H
    Anal Chem; 2009 Jul; 81(13):5541-8. PubMed ID: 19496539
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Backfolded Odijk Regime for Wormlike Chains Confined in Rectangular Nanochannels.
    Muralidhar A; Quevillon MJ; Dorfman KD
    Polymers (Basel); 2016 Mar; 8(3):. PubMed ID: 30979173
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simulation of DNA Extension in Nanochannels.
    Wang Y; Tree DR; Dorfman KD
    Macromolecules; 2011 Aug; 44(16):6594-6604. PubMed ID: 21860535
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Full on-chip nanoliter immunoassay by geometrical magnetic trapping of nanoparticle chains.
    Lacharme F; Vandevyver C; Gijs MA
    Anal Chem; 2008 Apr; 80(8):2905-10. PubMed ID: 18348542
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoconfinement effects: glucose oxidase reaction kinetics in nanofluidics.
    Wang C; Sheng ZH; Ouyang J; Xu JJ; Chen HY; Xia XH
    Chemphyschem; 2012 Feb; 13(3):762-8. PubMed ID: 22311832
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Langevin dynamics for the transport of flexible biological macromolecules in confined geometries.
    Peters MH
    J Chem Phys; 2011 Jan; 134(2):025105. PubMed ID: 21241153
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Real-time template-assisted manipulation of nanoparticles in a multilayer nanofluidic chip.
    Chen HM; Pang L; Gordon MS; Fainman Y
    Small; 2011 Oct; 7(19):2750-7. PubMed ID: 21842478
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DNA electrophoresis in confined, periodic geometries: a new lakes-straits model.
    Laachi N; Dorfman KD
    J Chem Phys; 2010 Dec; 133(23):234104. PubMed ID: 21186855
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DNA molecules descending a nanofluidic staircase by entropophoresis.
    Stavis SM; Geist J; Gaitan M; Locascio LE; Strychalski EA
    Lab Chip; 2012 Mar; 12(6):1174-82. PubMed ID: 22278088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.