These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 2351427)

  • 1. Afferent arteriolar responsiveness to altered perfusion pressure in renal hypertension.
    Inscho EW; Carmines PK; Cook AK; Navar LG
    Hypertension; 1990 Jun; 15(6 Pt 2):748-52. PubMed ID: 2351427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attenuated afferent arteriolar response to acetylcholine in Goldblatt hypertension.
    Ortenberg JM; Cook AK; Inscho EW; Carmines PK
    Hypertension; 1992 Jun; 19(6 Pt 2):785-9. PubMed ID: 1592481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Afferent arteriolar reactivity to angiotensin II is enhanced during the early phase of angiotensin II hypertension.
    Imig JD
    Am J Hypertens; 2000 Jul; 13(7):810-8. PubMed ID: 10933574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P2X1 receptor-mediated vasoconstriction of afferent arterioles in angiotensin II-infused hypertensive rats fed a high-salt diet.
    Inscho EW; Cook AK; Clarke A; Zhang S; Guan Z
    Hypertension; 2011 Apr; 57(4):780-7. PubMed ID: 21321307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Candesartan cilexetil protects against loss of autoregulatory efficiency in angiotensin II-infused rats.
    Inscho EW; Imig JD; Deichmann PC; Cook AK
    J Am Soc Nephrol; 1999 Jan; 10 Suppl 11():S178-83. PubMed ID: 9892160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal cortical and medullary microvascular blood flow autoregulation in rat.
    Harrison-Bernard LM; Navar LG
    Kidney Int Suppl; 1996 Dec; 57():S23-9. PubMed ID: 8941918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium mobilization contributes to pressure-mediated afferent arteriolar vasoconstriction.
    Inscho EW; Cook AK; Mui V; Imig JD
    Hypertension; 1998 Jan; 31(1 Pt 2):421-8. PubMed ID: 9453339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal nitric oxide synthase-dependent afferent arteriolar function in angiotensin II-induced hypertension.
    Ichihara A; Imig JD; Navar LG
    Hypertension; 1999 Jan; 33(1 Pt 2):462-6. PubMed ID: 9931148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Juxtamedullary afferent arteriolar responses to P1 and P2 purinergic stimulation.
    Inscho EW; Carmines PK; Navar LG
    Hypertension; 1991 Jun; 17(6 Pt 2):1033-7. PubMed ID: 2045147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoration of afferent arteriolar autoregulatory behavior in ischemia-reperfusion injury in rat kidneys.
    Feng W; Remedies CE; Obi IE; Aldous SR; Meera SI; Sanders PW; Inscho EW; Guan Z
    Am J Physiol Renal Physiol; 2021 Mar; 320(3):F429-F441. PubMed ID: 33491564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure-mediated vasoconstriction of juxtamedullary afferent arterioles involves P2-purinoceptor activation.
    Inscho EW; Cook AK; Navar LG
    Am J Physiol; 1996 Nov; 271(5 Pt 2):F1077-85. PubMed ID: 8946003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanics and composition of cerebral arterioles in renal and spontaneously hypertensive rats.
    Baumbach GL; Hajdu MA
    Hypertension; 1993 Jun; 21(6 Pt 1):816-26. PubMed ID: 8500863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Juxtamedullary microvascular dysfunction during the hyperfiltration stage of diabetes mellitus.
    Ohishi K; Okwueze MI; Vari RC; Carmines PK
    Am J Physiol; 1994 Jul; 267(1 Pt 2):F99-105. PubMed ID: 8048571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure-dependent contraction of rat juxtamedullary afferent arterioles.
    Sanchez-Ferrer CF; Roman RJ; Harder DR
    Circ Res; 1989 Apr; 64(4):790-8. PubMed ID: 2702737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional impairment of renal afferent arteriolar voltage-gated calcium channels in rats with diabetes mellitus.
    Carmines PK; Ohishi K; Ikenaga H
    J Clin Invest; 1996 Dec; 98(11):2564-71. PubMed ID: 8958219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered myogenic responsiveness of the renal microvasculature in experimental hypertension.
    Hayashi K; Epstein M; Saruta T
    J Hypertens; 1996 Dec; 14(12):1387-401. PubMed ID: 8986920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative contribution of vasopressin and angiotensin II to the altered renal microcirculatory dynamics in two-kidney Goldblatt hypertension.
    Ichikawa I; Ferrone RA; Duchin KL; Manning M; Dzau VJ; Brenner BM
    Circ Res; 1983 Nov; 53(5):592-602. PubMed ID: 6194914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide modulates but does not impair myogenic vasoconstriction of the afferent arteriole in spontaneously hypertensive rats. Studies in the isolated perfused hydronephrotic kidney.
    Hayashi K; Suzuki H; Saruta T
    Hypertension; 1995 Jun; 25(6):1212-9. PubMed ID: 7768564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated renovascular tone in young spontaneously hypertensive rats. Role of cytochrome P-450.
    Imig JD; Falck JR; Gebremedhin D; Harder DR; Roman RJ
    Hypertension; 1993 Sep; 22(3):357-64. PubMed ID: 8349328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adenosine A2 receptor activation attenuates afferent arteriolar autoregulation during adenosine receptor saturation in rats.
    Feng MG; Navar LG
    Hypertension; 2007 Oct; 50(4):744-9. PubMed ID: 17664389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.