These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23514405)

  • 1. Specific growth rate and substrate dependent polyhydroxybutyrate production in Saccharomyces cerevisiae.
    Kocharin K; Nielsen J
    AMB Express; 2013 Mar; 3(1):18. PubMed ID: 23514405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway.
    Kocharin K; Siewers V; Nielsen J
    Biotechnol Bioeng; 2013 Aug; 110(8):2216-24. PubMed ID: 23456608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae.
    Kocharin K; Chen Y; Siewers V; Nielsen J
    AMB Express; 2012 Sep; 2(1):52. PubMed ID: 23009357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defining Nutrient Combinations for Optimal Growth and Polyhydroxybutyrate Production by
    Zaldívar Carrillo JA; Stein LY; Sauvageau D
    Front Microbiol; 2018; 9():1513. PubMed ID: 30072960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of recombinant precursor pathway variations on poly[(R)-3-hydroxybutyrate] synthesis in Saccharomyces cerevisiae.
    Carlson R; Srienc F
    J Biotechnol; 2006 Jul; 124(3):561-73. PubMed ID: 16530287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic poly-3-D-hydroxybutyrate production from xylose in recombinant Saccharomyces cerevisiae using a NADH-dependent acetoacetyl-CoA reductase.
    de Las Heras AM; Portugal-Nunes DJ; Rizza N; Sandström AG; Gorwa-Grauslund MF
    Microb Cell Fact; 2016 Nov; 15(1):197. PubMed ID: 27863495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Glucose, Acetate and Ethanol as Carbon Resource for Production of Poly(3-Hydroxybutyrate) and Other Acetyl-CoA Derivatives.
    Sun S; Ding Y; Liu M; Xian M; Zhao G
    Front Bioeng Biotechnol; 2020; 8():833. PubMed ID: 32850713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing an ethanol utilization pathway in Escherichia coli to produce acetyl-CoA derived compounds.
    Liang H; Ma X; Ning W; Liu Y; Sinskey AJ; Stephanopoulos G; Zhou K
    Metab Eng; 2021 May; 65():223-231. PubMed ID: 33248272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saccharomyces cerevisiae expressing bacterial polyhydroxybutyrate synthase produces poly-3-hydroxybutyrate.
    Leaf TA; Peterson MS; Stoup SK; Somers D; Srienc F
    Microbiology (Reading); 1996 May; 142 ( Pt 5)():1169-1180. PubMed ID: 8704958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiology of poly-3-hydroxybutyrate (PHB) production by
    Henderson RA; Jones CW
    Microbiology (Reading); 1997 Jul; 143(7):2361-2371. PubMed ID: 33657717
    [No Abstract]   [Full Text] [Related]  

  • 11. Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by
    Sukruansuwan V; Napathorn SC
    Biotechnol Biofuels; 2018; 11():202. PubMed ID: 30061924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae.
    Postma E; Verduyn C; Scheffers WA; Van Dijken JP
    Appl Environ Microbiol; 1989 Feb; 55(2):468-77. PubMed ID: 2566299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyhydroxybutyrate (PHB) Production Using an Arabinose-Inducible Expression System in Comparison With Cold Shock Inducible Expression System in
    Napathorn SC; Visetkoop S; Pinyakong O; Okano K; Honda K
    Front Bioeng Biotechnol; 2021; 9():661096. PubMed ID: 34012957
    [No Abstract]   [Full Text] [Related]  

  • 14. Imaging and modelling of poly(3-hydroxybutyrate) synthesis in Paracoccus denitrificans.
    Bordel S; van Spanning RJM; Santos-Beneit F
    AMB Express; 2021 Aug; 11(1):113. PubMed ID: 34370106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis.
    Kozak BU; van Rossum HM; Benjamin KR; Wu L; Daran JM; Pronk JT; van Maris AJ
    Metab Eng; 2014 Jan; 21():46-59. PubMed ID: 24269999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol.
    Schoondermark-Stolk SA; Tabernero M; Chapman J; Ter Schure EG; Verrips CT; Verkleij AJ; Boonstra J
    FEMS Yeast Res; 2005 May; 5(8):757-66. PubMed ID: 15851104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical inhibition of acetyl coenzyme A carboxylase as a strategy to increase polyhydroxybutyrate yields in transgenic sugarcane.
    Petrasovits LA; McQualter RB; Gebbie LK; Blackman DM; Nielsen LK; Brumbley SM
    Plant Biotechnol J; 2013 Dec; 11(9):1146-51. PubMed ID: 24112832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced co-production of hydrogen and poly-(R)-3-hydroxybutyrate by recombinant PHB producing E. coli over-expressing hydrogenase 3 and acetyl-CoA synthetase.
    Wang RY; Shi ZY; Chen JC; Wu Q; Chen GQ
    Metab Eng; 2012 Sep; 14(5):496-503. PubMed ID: 22842473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA.
    Schadeweg V; Boles E
    Biotechnol Biofuels; 2016; 9():44. PubMed ID: 26913077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production and characterization of polyhydroxybutyrate from Vibrio harveyi MCCB 284 utilizing glycerol as carbon source.
    Mohandas SP; Balan L; Lekshmi N; Cubelio SS; Philip R; Bright Singh IS
    J Appl Microbiol; 2017 Mar; 122(3):698-707. PubMed ID: 27868364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.