These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 23514419)

  • 1. Parasite prolyl oligopeptidases and the challenge of designing chemotherapeuticals for Chagas disease, leishmaniasis and African trypanosomiasis.
    Bastos IM; Motta FN; Grellier P; Santana JM
    Curr Med Chem; 2013; 20(25):3103-15. PubMed ID: 23514419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oligopeptidase B, a missing enzyme in mammals and a potential drug target for trypanosomatid diseases.
    Motta FN; Azevedo CDS; Neves BP; Araújo CN; Grellier P; Santana JM; Bastos IMD
    Biochimie; 2019 Dec; 167():207-216. PubMed ID: 31628976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine peptidase inhibitors in trypanosomatid parasites.
    Lima AP; Reis FC; Costa TF
    Curr Med Chem; 2013; 20(25):3152-73. PubMed ID: 23514421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calpains: potential targets for alternative chemotherapeutic intervention against human pathogenic trypanosomatids.
    Branquinha MH; Marinho FA; Sangenito LS; Oliveira SS; Goncalves KC; Ennes-Vidal V; d'Avila-Levy CM; Santos AL
    Curr Med Chem; 2013; 20(25):3174-85. PubMed ID: 23899207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases.
    Kourbeli V; Chontzopoulou E; Moschovou K; Pavlos D; Mavromoustakos T; Papanastasiou IP
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aspartic peptidases of human pathogenic trypanosomatids: perspectives and trends for chemotherapy.
    Santos LO; Garcia-Gomes AS; Catanho M; Sodre CL; Santos AL; Branquinha MH; d'Avila-Levy CM
    Curr Med Chem; 2013; 20(25):3116-33. PubMed ID: 23298141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitors of dihydrofolate reductase in Leishmania and trypanosomes.
    Gilbert IH
    Biochim Biophys Acta; 2002 Jul; 1587(2-3):249-57. PubMed ID: 12084467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kinetoplastid chemotherapy revisited: current drugs, recent advances and future perspectives.
    Castillo E; Dea-Ayuela MA; Bolás-Fernández F; Rangel M; González-Rosende ME
    Curr Med Chem; 2010; 17(33):4027-51. PubMed ID: 20939823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteine proteases as potential targets for anti-trypanosomatid drug discovery.
    Judice WAS; Ferraz LS; Lopes RM; Vianna LDS; Siqueira FDS; Di Iorio JF; Dalzoto LAM; Trujilho MNR; Santos TDR; Machado MFM; Rodrigues T
    Bioorg Med Chem; 2021 Sep; 46():116365. PubMed ID: 34419821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trypanocidal drugs: mechanisms, resistance and new targets.
    Wilkinson SR; Kelly JM
    Expert Rev Mol Med; 2009 Oct; 11():e31. PubMed ID: 19863838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting Cysteine Proteases and their Inhibitors to Combat Trypanosomiasis.
    Saha A; Pushpa ; Moitra S; Basak D; Brahma S; Mondal D; Molla SH; Samadder A; Nandi S
    Curr Med Chem; 2024; 31(16):2135-2169. PubMed ID: 37340748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sterol 14alpha-demethylase (CYP51) as a therapeutic target for human trypanosomiasis and leishmaniasis.
    Lepesheva GI; Waterman MR
    Curr Top Med Chem; 2011; 11(16):2060-71. PubMed ID: 21619513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential Drug Targets in the Pentose Phosphate Pathway of Trypanosomatids.
    Loureiro I; Faria J; Santarem N; Smith TK; Tavares J; Cordeiro-da-Silva A
    Curr Med Chem; 2018; 25(39):5239-5265. PubMed ID: 29210635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting cysteine proteases in trypanosomatid disease drug discovery.
    Ferreira LG; Andricopulo AD
    Pharmacol Ther; 2017 Dec; 180():49-61. PubMed ID: 28579388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological approaches to antitrypanosomal chemotherapy.
    Croft SL
    Mem Inst Oswaldo Cruz; 1999; 94(2):215-20. PubMed ID: 10224531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteinases of Trypanosoma cruzi: patential targets for the chemotherapy of Changas desease.
    Cazzulo JJ
    Curr Top Med Chem; 2002 Nov; 2(11):1261-71. PubMed ID: 12171584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of cysteine-reactive small molecules in drug discovery for trypanosomal disease.
    Nicoll-Griffith DA
    Expert Opin Drug Discov; 2012 Apr; 7(4):353-66. PubMed ID: 22458506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Trypanothione Metabolism in Trypanosomatids.
    González-Montero MC; Andrés-Rodríguez J; García-Fernández N; Pérez-Pertejo Y; Reguera RM; Balaña-Fouce R; García-Estrada C
    Molecules; 2024 May; 29(10):. PubMed ID: 38792079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advancement in the Search of Innovative Antiprotozoal Agents Targeting Trypanothione Metabolism.
    Saccoliti F; Di Santo R; Costi R
    ChemMedChem; 2020 Dec; 15(24):2420-2435. PubMed ID: 32805075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secreted proteases of Trypanosoma brucei gambiense: possible targets for sleeping sickness control?
    Bossard G; Cuny G; Geiger A
    Biofactors; 2013; 39(4):407-14. PubMed ID: 23553721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.