BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 23514452)

  • 1. Computational investigation of the pyrolysis product selectivity for α-hydroxy phenethyl phenyl ether and phenethyl phenyl ether: analysis of substituent effects and reactant conformer selection.
    Beste A; Buchanan AC
    J Phys Chem A; 2013 Apr; 117(15):3235-42. PubMed ID: 23514452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of the pyrolysis of phenethyl phenyl ether: computational prediction of alpha/beta-selectivities.
    Beste A; Buchanan AC; Britt PF; Hathorn BC; Harrison RJ
    J Phys Chem A; 2007 Dec; 111(48):12118-26. PubMed ID: 17990858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational prediction of alpha/beta selectivities in the pyrolysis of oxygen-substituted phenethyl phenyl ethers.
    Beste A; Buchanan AC; Harrison RJ
    J Phys Chem A; 2008 Jun; 112(22):4982-8. PubMed ID: 18473447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of carbon-carbon phenyl migration in the pyrolysis mechanism of β-O-4 lignin model compounds: phenethyl phenyl ether and α-hydroxy phenethyl phenyl ether.
    Beste A; Buchanan AC
    J Phys Chem A; 2012 Dec; 116(50):12242-8. PubMed ID: 23194314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic analysis of the phenyl-shift reaction in β-O-4 lignin model compounds: a computational study.
    Beste A; Buchanan AC
    J Org Chem; 2011 Apr; 76(7):2195-203. PubMed ID: 21381723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers.
    Beste A; Buchanan AC
    J Org Chem; 2009 Apr; 74(7):2837-41. PubMed ID: 19260664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolysis of phenethyl phenyl ether tethered in mesoporous silica. Effects of confinement and surface spacer molecules on product selectivity.
    Kidder MK; Chaffee AL; Nguyen MH; Buchanan AC
    J Org Chem; 2011 Aug; 76(15):6014-23. PubMed ID: 21696147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds.
    Britt PF; Buchanan AC; Cooney MJ; Martineau DR
    J Org Chem; 2000 Mar; 65(5):1376-89. PubMed ID: 10814099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational study of bond dissociation enthalpies for substituted β-O-4 lignin model compounds.
    Younker JM; Beste A; Buchanan AC
    Chemphyschem; 2011 Dec; 12(18):3556-65. PubMed ID: 22065478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether.
    Jarvis MW; Daily JW; Carstensen HH; Dean AM; Sharma S; Dayton DC; Robichaud DJ; Nimlos MR
    J Phys Chem A; 2011 Feb; 115(4):428-38. PubMed ID: 21218825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confinement effects on product selectivity in the pyrolysis of phenethyl phenyl ether in mesoporous silica.
    Kidder MK; Britt PF; Chaffee AL; Buchanan AC
    Chem Commun (Camb); 2007 Jan; (1):52-4. PubMed ID: 17279258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen abstraction from n-butanol by the methyl radical: high level ab initio study of abstraction pathways and the importance of low energy rotational conformers.
    Katsikadakos D; Hardalupas Y; Taylor AM; Hunt PA
    Phys Chem Chem Phys; 2012 Jul; 14(27):9615-29. PubMed ID: 22692370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio study of the substituent effects on the relative stability of the E and Z conformers of phenyl esters. Stereoelectronic effects on the reactivity of the carbonyl group.
    Neuvonen H; Neuvonen K; Koch A; Kleinpeter E
    J Phys Chem A; 2005 Jul; 109(28):6279-89. PubMed ID: 16833969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chain amplification in photoreactions of N-alkoxypyridinium salts with alcohols: mechanism and kinetics.
    Shukla D; Ahearn WG; Farid S
    J Org Chem; 2005 Aug; 70(17):6809-19. PubMed ID: 16095300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of the reactions CF3CH2OCHF2 + OH/Cl and its product radicals and parent ether(CH3CH2OCH3) with OH.
    Yang L; Liu JY; Wang L; He HQ; Wang Y; Li ZS
    J Comput Chem; 2008 Mar; 29(4):550-61. PubMed ID: 17705163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of ring substitution on the O-neophyl rearrangement of 1,1-diarylalkoxyl radicals. A product and time-resolved kinetic study.
    Aureliano Antunes CS; Bietti M; Ercolani G; Lanzalunga O; Salamone M
    J Org Chem; 2005 May; 70(10):3884-91. PubMed ID: 15876075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic considerations for the degradation of methyl tert-butyl ether (MTBE) by sonolysis: effect of argon vs. oxygen saturated solutions.
    Kim DK; O'Shea KE; Cooper WJ
    Ultrason Sonochem; 2012 Jul; 19(4):959-68. PubMed ID: 22227553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density functional theory investigation of competitive free-radical processes during the thermal cracking of methylated polyaromatics: estimation of kinetic parameters.
    Leininger JP; Minot C; Lorant F; Behar F
    J Phys Chem A; 2007 Apr; 111(16):3082-90. PubMed ID: 17394290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas-phase kinetics study of reaction of OH radical with CH3NHNH2 by second-order multireference perturbation theory.
    Sun H; Zhang P; Law CK
    J Phys Chem A; 2012 May; 116(21):5045-56. PubMed ID: 22545789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toluene combustion: reaction paths, thermochemical properties, and kinetic analysis for the methylphenyl radical + O2 reaction.
    da Silva G; Chen CC; Bozzelli JW
    J Phys Chem A; 2007 Sep; 111(35):8663-76. PubMed ID: 17696501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.