These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 23514464)
1. Computing rovibrational levels of methane with curvilinear internal vibrational coordinates and an Eckart frame. Wang XG; Carrington T J Chem Phys; 2013 Mar; 138(10):104106. PubMed ID: 23514464 [TBL] [Abstract][Full Text] [Related]
2. Contracted basis Lanczos methods for computing numerically exact rovibrational levels of methane. Wang XG; Carrington T J Chem Phys; 2004 Aug; 121(7):2937-54. PubMed ID: 15291604 [TBL] [Abstract][Full Text] [Related]
3. Automatic differentiation method for numerical construction of the rotational-vibrational Hamiltonian as a power series in the curvilinear internal coordinates using the Eckart frame. Yachmenev A; Yurchenko SN J Chem Phys; 2015 Jul; 143(1):014105. PubMed ID: 26156463 [TBL] [Abstract][Full Text] [Related]
4. Numerically constructed internal-coordinate Hamiltonian with Eckart embedding and its application for the inversion tunneling of ammonia. Fábri C; Mátyus E; Császár AG Spectrochim Acta A Mol Biomol Spectrosc; 2014 Feb; 119():84-9. PubMed ID: 23702049 [TBL] [Abstract][Full Text] [Related]
5. Rovibrational spectroscopy using a kinetic energy operator in Eckart frame and the multi-configuration time-dependent Hartree (MCTDH) approach. Sadri K; Lauvergnat D; Gatti F; Meyer HD J Chem Phys; 2014 Sep; 141(11):114101. PubMed ID: 25240339 [TBL] [Abstract][Full Text] [Related]
6. Rotating full- and reduced-dimensional quantum chemical models of molecules. Fábri C; Mátyus E; Császár AG J Chem Phys; 2011 Feb; 134(7):074105. PubMed ID: 21341826 [TBL] [Abstract][Full Text] [Related]
7. Using an internal coordinate Gaussian basis and a space-fixed Cartesian coordinate kinetic energy operator to compute a vibrational spectrum with rectangular collocation. Manzhos S; Carrington T J Chem Phys; 2016 Dec; 145(22):224110. PubMed ID: 27984898 [TBL] [Abstract][Full Text] [Related]
8. Computational study of the rovibrational spectrum of CO₂-CS₂. Brown J; Wang XG; Carrington T; Grubbs GS; Dawes R J Chem Phys; 2014 Mar; 140(11):114303. PubMed ID: 24655176 [TBL] [Abstract][Full Text] [Related]
9. Vibrational energy levels of CH5(+). Wang XG; Carrington T J Chem Phys; 2008 Dec; 129(23):234102. PubMed ID: 19102521 [TBL] [Abstract][Full Text] [Related]
10. Rovibrational levels and wavefunctions of Cl(-)H2O. Wang XG; Carrington T J Chem Phys; 2014 May; 140(20):204306. PubMed ID: 24880279 [TBL] [Abstract][Full Text] [Related]
11. Computational study of the rovibrational spectrum of (OCS)2. Brown J; Wang XG; Dawes R; Carrington T J Chem Phys; 2012 Apr; 136(13):134306. PubMed ID: 22482551 [TBL] [Abstract][Full Text] [Related]
12. Using monomer vibrational wavefunctions as contracted basis functions to compute rovibrational levels of an H Wang XG; Carrington T J Chem Phys; 2017 Mar; 146(10):104105. PubMed ID: 28298098 [TBL] [Abstract][Full Text] [Related]
13. Using monomer vibrational wavefunctions to compute numerically exact (12D) rovibrational levels of water dimer. Wang XG; Carrington T J Chem Phys; 2018 Feb; 148(7):074108. PubMed ID: 29471639 [TBL] [Abstract][Full Text] [Related]
14. Rovibrational molecular hamiltonian in mixed bond-angle and umbrella-like coordinates. Makarewicz J; Skalozub A J Phys Chem A; 2007 Aug; 111(32):7860-9. PubMed ID: 17637044 [TBL] [Abstract][Full Text] [Related]
15. An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion. Yu HG J Chem Phys; 2016 Aug; 145(8):084109. PubMed ID: 27586906 [TBL] [Abstract][Full Text] [Related]
16. Eckart ro-vibrational Hamiltonians via the gateway Hamilton operator: Theory and practice. Szalay V J Chem Phys; 2017 Mar; 146(12):124107. PubMed ID: 28388108 [TBL] [Abstract][Full Text] [Related]
17. The role of axis embedding on rigid rotor decomposition analysis of variational rovibrational wave functions. Szidarovszky T; Fábri C; Császár AG J Chem Phys; 2012 May; 136(17):174112. PubMed ID: 22583215 [TBL] [Abstract][Full Text] [Related]
18. Modelling non-adiabatic effects in H₃⁺: solution of the rovibrational Schrödinger equation with motion-dependent masses and mass surfaces. Mátyus E; Szidarovszky T; Császár AG J Chem Phys; 2014 Oct; 141(15):154111. PubMed ID: 25338885 [TBL] [Abstract][Full Text] [Related]
19. Treating singularities present in the Sutcliffe-Tennyson vibrational Hamiltonian in orthogonal internal coordinates. Czakó G; Szalay V; Császár AG; Furtenbacher T J Chem Phys; 2005 Jan; 122(2):024101. PubMed ID: 15638566 [TBL] [Abstract][Full Text] [Related]
20. Reduced dimension rovibrational variational calculations of the S(1) state of C2H2. I. Methodology and implementation. Changala PB J Chem Phys; 2014 Jan; 140(2):024312. PubMed ID: 24437882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]