These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 23514475)

  • 21. A constrained approach to multiscale stochastic simulation of chemically reacting systems.
    Cotter SL; Zygalakis KC; Kevrekidis IG; Erban R
    J Chem Phys; 2011 Sep; 135(9):094102. PubMed ID: 21913748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions.
    Chevalier MW; El-Samad H
    J Chem Phys; 2014 Dec; 141(21):214108. PubMed ID: 25481130
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aging correlation functions of the interrupted fractional Fokker-Planck propagator.
    Witkoskie JB; Cao J
    J Chem Phys; 2006 Dec; 125(24):244511. PubMed ID: 17199359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. "All possible steps" approach to the accelerated use of Gillespie's algorithm.
    Lipshtat A
    J Chem Phys; 2007 May; 126(18):184103. PubMed ID: 17508788
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A convergent reaction-diffusion master equation.
    Isaacson SA
    J Chem Phys; 2013 Aug; 139(5):054101. PubMed ID: 23927237
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The finite state projection algorithm for the solution of the chemical master equation.
    Munsky B; Khammash M
    J Chem Phys; 2006 Jan; 124(4):044104. PubMed ID: 16460146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Gaussian jump process formulation of the reaction-diffusion master equation enables faster exact stochastic simulations.
    Subic T; Sbalzarini IF
    J Chem Phys; 2022 Nov; 157(19):194110. PubMed ID: 36414462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient computation of the first passage time distribution of the generalized master equation by steady-state relaxation.
    Shalloway D; Faradjian AK
    J Chem Phys; 2006 Feb; 124(5):054112. PubMed ID: 16468856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Bayesian method for construction of Markov models to describe dynamics on various time-scales.
    Rains EK; Andersen HC
    J Chem Phys; 2010 Oct; 133(14):144113. PubMed ID: 20949993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two classes of quasi-steady-state model reductions for stochastic kinetics.
    Mastny EA; Haseltine EL; Rawlings JB
    J Chem Phys; 2007 Sep; 127(9):094106. PubMed ID: 17824731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unbiased tau-leap methods for stochastic simulation of chemically reacting systems.
    Xu Z; Cai X
    J Chem Phys; 2008 Apr; 128(15):154112. PubMed ID: 18433195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Grand canonical Markov model: a stochastic theory for open nonequilibrium biochemical networks.
    Heuett WJ; Qian H
    J Chem Phys; 2006 Jan; 124(4):044110. PubMed ID: 16460152
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A hybrid method for micro-mesoscopic stochastic simulation of reaction-diffusion systems.
    Sayyidmousavi A; Rohlf K; Ilie S
    Math Biosci; 2019 Jun; 312():23-32. PubMed ID: 30998936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Path summation formulation of the master equation.
    Sun SX
    Phys Rev Lett; 2006 Jun; 96(21):210602. PubMed ID: 16803224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Size-independent differences between the mean of discrete stochastic systems and the corresponding continuous deterministic systems.
    Gadgil CJ
    Bull Math Biol; 2009 Oct; 71(7):1599-611. PubMed ID: 19322613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new class of highly efficient exact stochastic simulation algorithms for chemical reaction networks.
    Ramaswamy R; González-Segredo N; Sbalzarini IF
    J Chem Phys; 2009 Jun; 130(24):244104. PubMed ID: 19566139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stochastic phase transition operator.
    Yamanobe T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011924. PubMed ID: 21867230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A stochastic version of the Eigen model.
    Musso F
    Bull Math Biol; 2011 Jan; 73(1):151-80. PubMed ID: 20232170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of stochastic differential equation approximation of ion channel gating models.
    Bruce IC
    Ann Biomed Eng; 2009 Apr; 37(4):824-38. PubMed ID: 19152030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Manifestations of slow site exchange processes in solution NMR: a continuous Gaussian exchange model.
    Schurr JM; Fujimoto BS; Diaz R; Robinson BH
    J Magn Reson; 1999 Oct; 140(2):404-31. PubMed ID: 10497047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.