These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23514476)

  • 1. Marcus canonical integral for non-Gaussian processes and its computation: pathwise simulation and tau-leaping algorithm.
    Li T; Min B; Wang Z
    J Chem Phys; 2013 Mar; 138(10):104118. PubMed ID: 23514476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multinomial tau-leaping method for stochastic kinetic simulations.
    Pettigrew MF; Resat H
    J Chem Phys; 2007 Feb; 126(8):084101. PubMed ID: 17343434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate stochastic simulation via the step anticipation tau-leaping (SAL) algorithm.
    Sehl M; Alekseyenko AV; Lange KL
    J Comput Biol; 2009 Sep; 16(9):1195-208. PubMed ID: 19772431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond the adiabatic limit in systems with fast environments: A τ-leaping algorithm.
    Berríos-Caro E; Galla T
    Phys Rev E; 2021 Jul; 104(1-1):014122. PubMed ID: 34412210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly accurate tau-leaping methods with random corrections.
    Hu Y; Li T
    J Chem Phys; 2009 Mar; 130(12):124109. PubMed ID: 19334810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate implementation of leaping in space: the spatial partitioned-leaping algorithm.
    Iyengar KA; Harris LA; Clancy P
    J Chem Phys; 2010 Mar; 132(9):094101. PubMed ID: 20210383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic simulation of chemical kinetics.
    Gillespie DT
    Annu Rev Phys Chem; 2007; 58():35-55. PubMed ID: 17037977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integral tau methods for stiff stochastic chemical systems.
    Yang Y; Rathinam M; Shen J
    J Chem Phys; 2011 Jan; 134(4):044129. PubMed ID: 21280709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The numerical stability of leaping methods for stochastic simulation of chemically reacting systems.
    Cao Y; Petzold LR; Rathinam M; Gillespie DT
    J Chem Phys; 2004 Dec; 121(24):12169-78. PubMed ID: 15606235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive explicit-implicit tau-leaping method with automatic tau selection.
    Cao Y; Gillespie DT; Petzold LR
    J Chem Phys; 2007 Jun; 126(22):224101. PubMed ID: 17581038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asynchronous τ-leaping.
    Jȩdrzejewski-Szmek Z; Blackwell KT
    J Chem Phys; 2016 Mar; 144(12):125104. PubMed ID: 27036481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Avoiding negative populations in explicit Poisson tau-leaping.
    Cao Y; Gillespie DT; Petzold LR
    J Chem Phys; 2005 Aug; 123(5):054104. PubMed ID: 16108628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient step size selection for the tau-leaping simulation method.
    Cao Y; Gillespie DT; Petzold LR
    J Chem Phys; 2006 Jan; 124(4):044109. PubMed ID: 16460151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable time-stepping in the pathwise numerical solution of the chemical Langevin equation.
    Ilie S
    J Chem Phys; 2012 Dec; 137(23):234110. PubMed ID: 23267474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved delay-leaping simulation algorithm for biochemical reaction systems with delays.
    Yi N; Zhuang G; Da L; Wang Y
    J Chem Phys; 2012 Apr; 136(14):144108. PubMed ID: 22502502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A weak second order tau-leaping method for chemical kinetic systems.
    Hu Y; Li T; Min B
    J Chem Phys; 2011 Jul; 135(2):024113. PubMed ID: 21766931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fast exact simulation method for a class of Markov jump processes.
    Li Y; Hu L
    J Chem Phys; 2015 Nov; 143(18):184105. PubMed ID: 26567644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The finite state projection algorithm for the solution of the chemical master equation.
    Munsky B; Khammash M
    J Chem Phys; 2006 Jan; 124(4):044104. PubMed ID: 16460146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Michaelis-Menten speeds up tau-leaping under a wide range of conditions.
    Wu S; Fu J; Cao Y; Petzold L
    J Chem Phys; 2011 Apr; 134(13):134112. PubMed ID: 21476748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic identification of model reductions for discrete stochastic simulation.
    Wu S; Fu J; Li H; Petzold L
    J Chem Phys; 2012 Jul; 137(3):034106. PubMed ID: 22830682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.