These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23514485)

  • 1. Core-shell structure disclosed in self-assembled Cu-Ag nanoalloy particles.
    Tchaplyguine M; Andersson T; Zhang Ch; Björneholm O
    J Chem Phys; 2013 Mar; 138(10):104303. PubMed ID: 23514485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alloying and oxidation of in situ produced core-shell Al@Yb nanoalloy particles--an "on-the-fly" study.
    Zhang C; Andersson T; Mikkelä MH; Mårsell E; Björneholm O; Xu X; Tchaplyguine M; Liu Z
    J Chem Phys; 2014 Aug; 141(8):084302. PubMed ID: 25173009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared spectroscopy of Cu+(H2O)(n) and Ag+(H2O)(n): coordination and solvation of noble-metal ions.
    Iino T; Ohashi K; Inoue K; Judai K; Nishi N; Sekiya H
    J Chem Phys; 2007 May; 126(19):194302. PubMed ID: 17523799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Ag and Au nanoparticles on the SERS of 4-aminobenzenethiol assembled on powdered copper.
    Kim K; Lee HS
    J Phys Chem B; 2005 Oct; 109(40):18929-34. PubMed ID: 16853437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis of bimetallic Cu-Ag nanoparticles under microwave irradiation and their oxidation resistance.
    Chen Z; Mochizuki D; Maitani MM; Wada Y
    Nanotechnology; 2013 Jul; 24(26):265602. PubMed ID: 23732107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of fully covered Cu-Ag core-shell nanoparticles by compound method and anti-oxidation performance.
    Huang Y; Wu F; Zhou Z; Zhou L; Liu H
    Nanotechnology; 2020 Apr; 31(17):175601. PubMed ID: 31910401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Au and Au@Ag core-shell nanoparticles on the SERS of bridging organic molecules.
    Güzel R; Ustündağ Z; Ekşi H; Keskin S; Taner B; Durgun ZG; Turan AA; Solak AO
    J Colloid Interface Sci; 2010 Nov; 351(1):35-42. PubMed ID: 20701922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration.
    Banerjee M; Sharma S; Chattopadhyay A; Ghosh SS
    Nanoscale; 2011 Dec; 3(12):5120-5. PubMed ID: 22057130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics.
    Lee C; Kim NR; Koo J; Lee YJ; Lee HM
    Nanotechnology; 2015 Nov; 26(45):455601. PubMed ID: 26489391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of dendrimer-templated Ag-Cu bimetallic nanoclusters.
    Li G; Luo Y
    Inorg Chem; 2008 Jan; 47(1):360-4. PubMed ID: 18076157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic trapping through coalescence and the formation of patterned Ag-Cu nanoparticles.
    Grammatikopoulos P; Kioseoglou J; Galea A; Vernieres J; Benelmekki M; Diaz RE; Sowwan M
    Nanoscale; 2016 May; 8(18):9780-90. PubMed ID: 27119383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic-level alloying and de-alloying in doped gold nanoparticles.
    Gottlieb E; Qian H; Jin R
    Chemistry; 2013 Mar; 19(13):4238-43. PubMed ID: 23404729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining optical lithography with rapid microwave heating for the selective growth of Au/Ag bimetallic core/shell structures on patterned silicon wafers.
    Liu FK; Huang PW; Chang YC; Ko FH; Chu TC
    Langmuir; 2005 Mar; 21(6):2519-25. PubMed ID: 15752048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen.
    Guo H; Chen Y; Chen X; Wen R; Yue GH; Peng DL
    Nanotechnology; 2011 May; 22(19):195604. PubMed ID: 21430312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth.
    Shankar SS; Rai A; Ahmad A; Sastry M
    J Colloid Interface Sci; 2004 Jul; 275(2):496-502. PubMed ID: 15178278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver-Copper Nanoalloy Catalyst Layer for Bifunctional Air Electrodes in Alkaline Media.
    Wu X; Chen F; Jin Y; Zhang N; Johnston RL
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):17782-91. PubMed ID: 26200807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial deposition of Ag on Au seeds leading to AucoreAgshell in organic media.
    Prathap Chandran S; Ghatak J; Satyam PV; Sastry M
    J Colloid Interface Sci; 2007 Aug; 312(2):498-505. PubMed ID: 17434179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmission electron microscopy and theoretical analysis of AuCu nanoparticles: atomic distribution and dynamic behavior.
    Ascencio JA; Liu HB; Pal U; Medina A; Wang ZL
    Microsc Res Tech; 2006 Jul; 69(7):522-30. PubMed ID: 16732542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equilibrium geometries, stabilities, and electronic properties of the bimetallic M2-doped Au(n) (M = Ag, Cu; n = 1-10) clusters: comparison with pure gold clusters.
    Zhao YR; Kuang XY; Zheng BB; Li YF; Wang SJ
    J Phys Chem A; 2011 Feb; 115(5):569-76. PubMed ID: 21192697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology and electrochemical behavior of Ag-Cu nanoparticle-doped amalgams.
    Chung KH; Hsiao LY; Lin YS; Duh JG
    Acta Biomater; 2008 May; 4(3):717-24. PubMed ID: 18321799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.