These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 23514517)
1. Molecular dynamics simulations of electrophoresis of polyelectrolytes in nano confining cylindrical geometries. Nedelcu S; Sommer JU J Chem Phys; 2013 Mar; 138(10):104905. PubMed ID: 23514517 [TBL] [Abstract][Full Text] [Related]
2. Charged Polymers Transport under Applied Electric Fields in Periodic Channels. Nedelcu S; Sommer JU Materials (Basel); 2013 Jul; 6(7):3007-3021. PubMed ID: 28811419 [TBL] [Abstract][Full Text] [Related]
3. Nonequilibrium unfolding of polyelectrolyte condensates in electric fields. Netz RR Phys Rev Lett; 2003 Mar; 90(12):128104. PubMed ID: 12688907 [TBL] [Abstract][Full Text] [Related]
4. Mesoscale hydrodynamic simulation of short polyelectrolytes in electric fields. Frank S; Winkler RG J Chem Phys; 2009 Dec; 131(23):234905. PubMed ID: 20025346 [TBL] [Abstract][Full Text] [Related]
5. Molecular dynamics simulations of dendritic polyelectrolytes with flexible spacers in salt free solution. Lin Y; Liao Q; Jin X J Phys Chem B; 2007 May; 111(21):5819-28. PubMed ID: 17488000 [TBL] [Abstract][Full Text] [Related]
6. Polyelectrolyte brushes in external fields: molecular dynamics simulations and mean-field theory. Merlitz H; Li C; Wu C; Sommer JU Soft Matter; 2015 Jul; 11(28):5688-96. PubMed ID: 26096075 [TBL] [Abstract][Full Text] [Related]
10. Electrophoretic mobilities of counterions and a polymer in cylindrical pores. Singh SP; Muthukumar M J Chem Phys; 2014 Sep; 141(11):114901. PubMed ID: 25240366 [TBL] [Abstract][Full Text] [Related]
11. Charged dendrimers in trivalent salt solutions under the action of DC electric fields. Das AK; Hsiao PY J Phys Chem B; 2014 Jun; 118(23):6265-76. PubMed ID: 24837658 [TBL] [Abstract][Full Text] [Related]
12. Collapse of highly charged polyelectrolytes triggered by attractive dipole-dipole and correlation-induced electrostatic interactions. Cherstvy AG J Phys Chem B; 2010 Apr; 114(16):5241-9. PubMed ID: 20359231 [TBL] [Abstract][Full Text] [Related]
13. Monte Carlo simulation and molecular theory of tethered polyelectrolytes. Hehmeyer OJ; Arya G; Panagiotopoulos AZ; Szleifer I J Chem Phys; 2007 Jun; 126(24):244902. PubMed ID: 17614585 [TBL] [Abstract][Full Text] [Related]
14. Separation of long linear polymers in gel electrophoresis with alternating electric fields: a theoretical study using the necklace model. Terranova GR; Mártin HO; Aldao CM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061801. PubMed ID: 23005118 [TBL] [Abstract][Full Text] [Related]
16. Lattice-Boltzmann simulations of the electrophoretic stretching of polyelectrolytes: the importance of hydrodynamic interactions. Hickey OA; Holm C; Smiatek J J Chem Phys; 2014 Apr; 140(16):164904. PubMed ID: 24784307 [TBL] [Abstract][Full Text] [Related]
17. Importance of boundary on the electrophoresis of a soft cylindrical particle. Hsu JP; Lo HM; Yeh LH; Tseng S J Phys Chem B; 2012 Oct; 116(41):12626-32. PubMed ID: 23009057 [TBL] [Abstract][Full Text] [Related]
18. Tethered polyelectrolytes under the action of an electrical field: a molecular-dynamics study. Bertrand M; Slater GW Eur Phys J E Soft Matter; 2007 May; 23(1):83-9. PubMed ID: 17534575 [TBL] [Abstract][Full Text] [Related]
19. Electrical properties of multilayers from low- and high-molecular-weight polyelectrolytes. Radeva T; Milkova V; Petkanchin I J Colloid Interface Sci; 2004 Nov; 279(2):351-6. PubMed ID: 15464798 [TBL] [Abstract][Full Text] [Related]