BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23514548)

  • 1. Function prediction from networks of local evolutionary similarity in protein structure.
    Erdin S; Venner E; Lisewski AM; Lichtarge O
    BMC Bioinformatics; 2013; 14 Suppl 3(Suppl 3):S6. PubMed ID: 23514548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary Trace Annotation Server: automated enzyme function prediction in protein structures using 3D templates.
    Ward RM; Venner E; Daines B; Murray S; Erdin S; Kristensen DM; Lichtarge O
    Bioinformatics; 2009 Jun; 25(11):1426-7. PubMed ID: 19307237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of enzyme function based on 3D templates of evolutionarily important amino acids.
    Kristensen DM; Ward RM; Lisewski AM; Erdin S; Chen BY; Fofanov VY; Kimmel M; Kavraki LE; Lichtarge O
    BMC Bioinformatics; 2008 Jan; 9():17. PubMed ID: 18190718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary trace annotation of protein function in the structural proteome.
    Erdin S; Ward RM; Venner E; Lichtarge O
    J Mol Biol; 2010 Mar; 396(5):1451-73. PubMed ID: 20036248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recurrent use of evolutionary importance for functional annotation of proteins based on local structural similarity.
    Kristensen DM; Chen BY; Fofanov VY; Ward RM; Lisewski AM; Kimmel M; Kavraki LE; Lichtarge O
    Protein Sci; 2006 Jun; 15(6):1530-6. PubMed ID: 16672239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De-orphaning the structural proteome through reciprocal comparison of evolutionarily important structural features.
    Ward RM; Erdin S; Tran TA; Kristensen DM; Lisewski AM; Lichtarge O
    PLoS One; 2008 May; 3(5):e2136. PubMed ID: 18461181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks.
    Walsh I; Baù D; Martin AJ; Mooney C; Vullo A; Pollastri G
    BMC Struct Biol; 2009 Jan; 9():5. PubMed ID: 19183478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ETAscape: analyzing protein networks to predict enzymatic function and substrates in Cytoscape.
    Bachman BJ; Venner E; Lua RC; Erdin S; Lichtarge O
    Bioinformatics; 2012 Aug; 28(16):2186-8. PubMed ID: 22689386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio and homology based prediction of protein domains by recursive neural networks.
    Walsh I; Martin AJ; Mooney C; Rubagotti E; Vullo A; Pollastri G
    BMC Bioinformatics; 2009 Jun; 10():195. PubMed ID: 19558651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate protein structure annotation through competitive diffusion of enzymatic functions over a network of local evolutionary similarities.
    Venner E; Lisewski AM; Erdin S; Ward RM; Amin SR; Lichtarge O
    PLoS One; 2010 Dec; 5(12):e14286. PubMed ID: 21179190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to inherit statistically validated annotation within BAR+ protein clusters.
    Piovesan D; Martelli PL; Fariselli P; Profiti G; Zauli A; Rossi I; Casadio R
    BMC Bioinformatics; 2013; 14 Suppl 3(Suppl 3):S4. PubMed ID: 23514411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a library of structural templates to recognise catalytic sites and explore their evolution in homologous families.
    Torrance JW; Bartlett GJ; Porter CT; Thornton JM
    J Mol Biol; 2005 Apr; 347(3):565-81. PubMed ID: 15755451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. COFACTOR: an accurate comparative algorithm for structure-based protein function annotation.
    Roy A; Yang J; Zhang Y
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W471-7. PubMed ID: 22570420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting distant-homology protein structures by aligning deep neural-network based contact maps.
    Zheng W; Wuyun Q; Li Y; Mortuza SM; Zhang C; Pearce R; Ruan J; Zhang Y
    PLoS Comput Biol; 2019 Oct; 15(10):e1007411. PubMed ID: 31622328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Template-based C8-SCORPION: a protein 8-state secondary structure prediction method using structural information and context-based features.
    Yaseen A; Li Y
    BMC Bioinformatics; 2014; 15 Suppl 8(Suppl 8):S3. PubMed ID: 25080939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FLORA: a novel method to predict protein function from structure in diverse superfamilies.
    Redfern OC; Dessailly BH; Dallman TJ; Sillitoe I; Orengo CA
    PLoS Comput Biol; 2009 Aug; 5(8):e1000485. PubMed ID: 19714201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and Protein Interaction-Based Gene Ontology Annotations Reveal Likely Functions of Uncharacterized Proteins on Human Chromosome 17.
    Zhang C; Wei X; Omenn GS; Zhang Y
    J Proteome Res; 2018 Dec; 17(12):4186-4196. PubMed ID: 30265558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein function prediction by massive integration of evolutionary analyses and multiple data sources.
    Cozzetto D; Buchan DW; Bryson K; Jones DT
    BMC Bioinformatics; 2013; 14 Suppl 3(Suppl 3):S1. PubMed ID: 23514099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre.
    Bennett-Lovsey RM; Herbert AD; Sternberg MJ; Kelley LA
    Proteins; 2008 Feb; 70(3):611-25. PubMed ID: 17876813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of the impact of PSI:Biology according to the annotations of the determined structures.
    DePietro PJ; Julfayev ES; McLaughlin WA
    BMC Struct Biol; 2013 Oct; 13():24. PubMed ID: 24139526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.