BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23514873)

  • 1. Nanog is an essential factor for induction of pluripotency in somatic cells from endangered felids.
    Verma R; Liu J; Holland MK; Temple-Smith P; Williamson M; Verma PJ
    Biores Open Access; 2013 Feb; 2(1):72-6. PubMed ID: 23514873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inducing pluripotency in somatic cells from the snow leopard (Panthera uncia), an endangered felid.
    Verma R; Holland MK; Temple-Smith P; Verma PJ
    Theriogenology; 2012 Jan; 77(1):220-8, 228.e1-2. PubMed ID: 22079579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inducing Pluripotency in the Domestic Cat (
    Dutton LC; Dudhia J; Guest DJ; Connolly DJ
    Stem Cells Dev; 2019 Oct; 28(19):1299-1309. PubMed ID: 31389301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous pluripotent factor expression after reprogramming cat fetal fibroblasts using inducible transcription factors.
    Zhou R; Comizzoli P; Keefer CL
    Mol Reprod Dev; 2019 Nov; 86(11):1671-1681. PubMed ID: 31429169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid and efficient reprogramming of human amnion-derived cells into pluripotency by three factors OCT4/SOX2/NANOG.
    Zhao HX; Li Y; Jin HF; Xie L; Liu C; Jiang F; Luo YN; Yin GW; Li Y; Wang J; Li LS; Yao YQ; Wang XH
    Differentiation; 2010; 80(2-3):123-9. PubMed ID: 20510497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear reprogramming with a non-integrating human RNA virus.
    Driscoll CB; Tonne JM; El Khatib M; Cattaneo R; Ikeda Y; Devaux P
    Stem Cell Res Ther; 2015 Mar; 6(1):48. PubMed ID: 25889591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induced pluripotent stem cells from goat fibroblasts.
    Song H; Li H; Huang M; Xu D; Gu C; Wang Z; Dong F; Wang F
    Mol Reprod Dev; 2013 Dec; 80(12):1009-17. PubMed ID: 24123501
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Recchia K; Machado LS; Botigelli RC; Pieri NCG; Barbosa G; de Castro RVG; Marques MG; Pessôa LVF; Fantinato Neto P; Meirelles FV; de Souza AF; Martins SMMK; Bressan FF
    World J Stem Cells; 2022 Mar; 14(3):231-244. PubMed ID: 35432738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mouse iPSC generated with porcine reprogramming factors as a model for studying the effects of non-silenced heterologous transgenes on pluripotency.
    Petkov SG; Glage S; Niemann H
    J Stem Cells Regen Med; 2017; 13(1):20-28. PubMed ID: 28684894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exogenous LIN28 Is Required for the Maintenance of Self-Renewal and Pluripotency in Presumptive Porcine-Induced Pluripotent Stem Cells.
    Chakritbudsabong W; Chaiwattanarungruengpaisan S; Sariya L; Pamonsupornvichit S; Ferreira JN; Sukho P; Gronsang D; Tharasanit T; Dinnyes A; Rungarunlert S
    Front Cell Dev Biol; 2021; 9():709286. PubMed ID: 34354993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reprogramming of mouse fibroblasts into induced pluripotent stem cells with Nanog.
    Moon JH; Yun W; Kim J; Hyeon S; Kang PJ; Park G; Kim A; Oh S; Whang KY; Kim DW; Yoon BS; You S
    Biochem Biophys Res Commun; 2013 Feb; 431(3):444-9. PubMed ID: 23333380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zic3 enhances the generation of mouse induced pluripotent stem cells.
    Declercq J; Sheshadri P; Verfaillie CM; Kumar A
    Stem Cells Dev; 2013 Jul; 22(14):2017-25. PubMed ID: 23421367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural stem cells achieve and maintain pluripotency without feeder cells.
    Choi HW; Kim JS; Choi S; Jang HJ; Kim MJ; Choi Y; Schöler HR; Chung HM; Do JT
    PLoS One; 2011; 6(6):e21367. PubMed ID: 21738644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of two induced pluripotent stem cells lines from a Mucopolysaccharydosis IIIB (MPSIIIB) patient.
    Vallejo-Diez S; Fleischer A; Martín-Fernández JM; Sánchez-Gilabert A; Bachiller D
    Stem Cell Res; 2018 Dec; 33():180-184. PubMed ID: 30408744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of human-induced pluripotent stem cells from gut mesentery-derived cells by ectopic expression of OCT4/SOX2/NANOG.
    Li Y; Zhao H; Lan F; Lee A; Chen L; Lin C; Yao Y; Li L
    Cell Reprogram; 2010 Jun; 12(3):237-47. PubMed ID: 20698766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OCT4, SOX2 and NANOG co-regulate glycolysis and participate in somatic induced reprogramming.
    Ding Y; Yuan X; Zou Y; Gao J; Xu X; Sun H; Zuo Q; Zhang Y; Li B
    Cytotechnology; 2022 Jun; 74(3):371-383. PubMed ID: 35733702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression Nanog activates pluripotent genes in porcine fetal fibroblasts and nuclear transfer embryos.
    Zhang L; Luo YB; Bou G; Kong QR; Huan YJ; Zhu J; Wang JY; Li H; Wang F; Shi YQ; Wei YC; Liu ZH
    Anat Rec (Hoboken); 2011 Nov; 294(11):1809-17. PubMed ID: 21972213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring bovine fetal fibroblast reprogramming utilizing a bovine NANOG promoter-driven EGFP reporter system.
    Lei L; Li L; Du F; Chen CH; Wang H; Keefer CL
    Mol Reprod Dev; 2013 Mar; 80(3):193-203. PubMed ID: 23280629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Reprogramming of Human Primordial Germ Cells into Induced Pluripotent Stem Cells: Efficient Generation of Genetically Engineered Germ Cells.
    Bazley FA; Liu CF; Yuan X; Hao H; All AH; De Los Angeles A; Zambidis ET; Gearhart JD; Kerr CL
    Stem Cells Dev; 2015 Nov; 24(22):2634-48. PubMed ID: 26154167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attempting to Convert Primed Porcine Embryonic Stem Cells into a Naive State Through the Overexpression of Reprogramming Factors.
    Park TY; Choi KH; Lee DK; Oh JN; Kim SH; Lee CK
    Cell Reprogram; 2018 Oct; 20(5):289-300. PubMed ID: 30277824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.