BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 23514937)

  • 1. CloudMC: a cloud computing application for Monte Carlo simulation.
    Miras H; Jiménez R; Miras C; Gomà C
    Phys Med Biol; 2013 Apr; 58(8):N125-33. PubMed ID: 23514937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo verification of radiotherapy treatments with CloudMC.
    Miras H; Jiménez R; Perales Á; Terrón JA; Bertolet A; Ortiz A; Macías J
    Radiat Oncol; 2018 Jun; 13(1):99. PubMed ID: 29945681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.
    Wang H; Ma Y; Pratx G; Xing L
    Phys Med Biol; 2011 Sep; 56(17):N175-81. PubMed ID: 21841211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiotherapy Monte Carlo simulation using cloud computing technology.
    Poole CM; Cornelius I; Trapp JV; Langton CM
    Australas Phys Eng Sci Med; 2012 Dec; 35(4):497-502. PubMed ID: 23188699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GATE Monte Carlo simulation of dose distribution using MapReduce in a cloud computing environment.
    Liu Y; Tang Y; Gao X
    Australas Phys Eng Sci Med; 2017 Dec; 40(4):777-783. PubMed ID: 28861861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The Monte Carlo method and parallel estimation in the drawing up of radiosurgery treatment plans].
    Scielzo G; Grillo Ruggieri F; Schwarz M; Rivolta A; Brunelli B; Surridge M; Gill A; Rietbrock C
    Radiol Med; 1998 Jun; 95(6):647-55. PubMed ID: 9717550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloud-based serverless computing enables accelerated monte carlo simulations for nuclear medicine imaging.
    Bayerlein R; Swarnakar V; Selfridge A; Spencer BA; Nardo L; Badawi RD
    Biomed Phys Eng Express; 2024 Jun; 10(4):. PubMed ID: 38876087
    [No Abstract]   [Full Text] [Related]  

  • 8. [Design and study of parallel computing environment of Monte Carlo simulation for particle therapy planning using a public cloud-computing infrastructure].
    Yokohama N
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2013 Jul; 69(7):773-7. PubMed ID: 23877155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of PENFAST--a fast Monte Carlo code for dose calculations in photon and electron radiotherapy treatment planning.
    Habib B; Poumarede B; Tola F; Barthe J
    Phys Med; 2010 Jan; 26(1):17-25. PubMed ID: 19342258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GPU-based fast Monte Carlo simulation for radiotherapy dose calculation.
    Jia X; Gu X; Graves YJ; Folkerts M; Jiang SB
    Phys Med Biol; 2011 Nov; 56(22):7017-31. PubMed ID: 22016026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulation of the dynamic micro-multileaf collimator of a LINAC Elekta Precise using PENELOPE.
    González W; Lallena AM; Alfonso R
    Phys Med Biol; 2011 Jun; 56(11):3417-31. PubMed ID: 21572185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MCX Cloud-a modern, scalable, high-performance and in-browser Monte Carlo simulation platform with cloud computing.
    Fang Q; Yan S
    J Biomed Opt; 2022 Jan; 27(8):. PubMed ID: 34989198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deterministic partial differential equation model for dose calculation in electron radiotherapy.
    Duclous R; Dubroca B; Frank M
    Phys Med Biol; 2010 Jul; 55(13):3843-57. PubMed ID: 20571208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation.
    España S; Herraiz JL; Vicente E; Vaquero JJ; Desco M; Udias JM
    Phys Med Biol; 2009 Mar; 54(6):1723-42. PubMed ID: 19242053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between PENELOPE and electron Monte Carlo simulations of electron fields used in the treatment of conjunctival lymphoma.
    Brualla L; Palanco-Zamora R; Wittig A; Sempau J; Sauerwein W
    Phys Med Biol; 2009 Sep; 54(18):5469-81. PubMed ID: 19706962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A preliminary study of in-house Monte Carlo simulations: an integrated Monte Carlo verification system.
    Mukumoto N; Tsujii K; Saito S; Yasunaga M; Takegawa H; Yamamoto T; Numasaki H; Teshima T
    Int J Radiat Oncol Biol Phys; 2009 Oct; 75(2):571-9. PubMed ID: 19735883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy.
    Paganetti H; Jiang H; Parodi K; Slopsema R; Engelsman M
    Phys Med Biol; 2008 Sep; 53(17):4825-53. PubMed ID: 18701772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SBRT of lung tumours: Monte Carlo simulation with PENELOPE of dose distributions including respiratory motion and comparison with different treatment planning systems.
    Panettieri V; Wennberg B; Gagliardi G; Duch MA; Ginjaume M; Lax I
    Phys Med Biol; 2007 Jul; 52(14):4265-81. PubMed ID: 17664607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MMCTP: a radiotherapy research environment for Monte Carlo and patient-specific treatment planning.
    Alexander A; Deblois F; Stroian G; Al-Yahya K; Heath E; Seuntjens J
    Phys Med Biol; 2007 Jul; 52(13):N297-308. PubMed ID: 17664568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards real-time photon Monte Carlo dose calculation in the cloud.
    Ziegenhein P; Kozin IN; Kamerling CP; Oelfke U
    Phys Med Biol; 2017 Jun; 62(11):4375-4389. PubMed ID: 28141583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.