BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23514970)

  • 1. Altitude training induced alterations in erythrocyte rheological properties: a controlled comparison study in rats.
    Bor-Kucukatay M; Colak R; Erken G; Kilic-Toprak E; Kucukatay V
    Clin Hemorheol Microcirc; 2014; 58(4):479-88. PubMed ID: 23514970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis.
    Bonetti DL; Hopkins WG
    Sports Med; 2009; 39(2):107-27. PubMed ID: 19203133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining hypoxic methods for peak performance.
    Millet GP; Roels B; Schmitt L; Woorons X; Richalet JP
    Sports Med; 2010 Jan; 40(1):1-25. PubMed ID: 20020784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypobaric live high-train low does not improve aerobic performance more than live low-train low in cross-country skiers.
    Robach P; Hansen J; Pichon A; Meinild Lundby AK; Dandanell S; Slettaløkken Falch G; Hammarström D; Pesta DH; Siebenmann C; Keiser S; Kérivel P; Whist JE; Rønnestad BR; Lundby C
    Scand J Med Sci Sports; 2018 Jun; 28(6):1636-1652. PubMed ID: 29469995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Live High-Train Low and High" Hypoxic Training Improves Team-Sport Performance.
    Brocherie F; Millet GP; Hauser A; Steiner T; Rysman J; Wehrlin JP; Girard O
    Med Sci Sports Exerc; 2015 Oct; 47(10):2140-9. PubMed ID: 25668402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Living High-Training Low for 21 Days Enhances Exercise Economy, Hemodynamic Function, and Exercise Performance of Competitive Runners.
    Park HY; Park W; Lim K
    J Sports Sci Med; 2019 Sep; 18(3):427-437. PubMed ID: 31427864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training Quantification and Periodization during Live High Train High at 2100 M in Elite Runners: An Observational Cohort Case Study.
    Sharma AP; Saunders PU; Garvican-Lewis LA; Périard JD; Clark B; Gore CJ; Raysmith BP; Stanley J; Robertson EY; Thompson KG
    J Sports Sci Med; 2018 Dec; 17(4):607-616. PubMed ID: 30479529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is hypoxia training good for muscles and exercise performance?
    Vogt M; Hoppeler H
    Prog Cardiovasc Dis; 2010; 52(6):525-33. PubMed ID: 20417346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cycling Exercise Training Alleviates Hypoxia-Impaired Erythrocyte Rheology.
    Chou SL; Huang YC; Fu TC; Hsu CC; Wang JS
    Med Sci Sports Exerc; 2016 Jan; 48(1):57-65. PubMed ID: 26672920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of "living high-training low" on physical performance in rats.
    Miyazaki S; Sakai A
    Int J Biometeorol; 2000 May; 44(1):24-30. PubMed ID: 10879425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endurance Is Improved in Female Rats After Living High-Training High Despite Alterations in Skeletal Muscle.
    Malgoyre A; Prola A; Meunier A; Chapot R; Serrurier B; Koulmann N; Bigard X; Sanchez H
    Front Sports Act Living; 2021; 3():663857. PubMed ID: 34124658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxic exercise training causes erythrocyte senescence and rheological dysfunction by depressed Gardos channel activity.
    Mao TY; Fu LL; Wang JS
    J Appl Physiol (1985); 2011 Aug; 111(2):382-91. PubMed ID: 21551009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Live high-train low" using normobaric hypoxia: a double-blinded, placebo-controlled study.
    Siebenmann C; Robach P; Jacobs RA; Rasmussen P; Nordsborg N; Diaz V; Christ A; Olsen NV; Maggiorini M; Lundby C
    J Appl Physiol (1985); 2012 Jan; 112(1):106-17. PubMed ID: 22033534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of swimming exercise on red blood cell rheology in trained and untrained rats.
    Yalcin O; Bor-Kucukatay M; Senturk UK; Baskurt OK
    J Appl Physiol (1985); 2000 Jun; 88(6):2074-80. PubMed ID: 10846020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining the "dose" of altitude training: how high to live for optimal sea level performance enhancement.
    Chapman RF; Karlsen T; Resaland GK; Ge RL; Harber MP; Witkowski S; Stray-Gundersen J; Levine BD
    J Appl Physiol (1985); 2014 Mar; 116(6):595-603. PubMed ID: 24157530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of "Live High-Train Low" in normobaric versus hypobaric hypoxia.
    Saugy JJ; Schmitt L; Cejuela R; Faiss R; Hauser A; Wehrlin JP; Rudaz B; Delessert A; Robinson N; Millet GP
    PLoS One; 2014; 9(12):e114418. PubMed ID: 25517507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal type and dose of hypoxic training for improving maximal aerobic capacity in athletes: a systematic review and Bayesian model-based network meta-analysis.
    Feng X; Zhao L; Chen Y; Wang Z; Lu H; Wang C
    Front Physiol; 2023; 14():1223037. PubMed ID: 37745240
    [No Abstract]   [Full Text] [Related]  

  • 18. Redox status biomarkers in the fast-twitch extensor digitorum longus resulting from the hypoxic exercise.
    Ağaşcıoğlu E; Çolak R; Çakatay U
    Nagoya J Med Sci; 2022 May; 84(2):433-447. PubMed ID: 35967949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise training and detraining modify hemorheological parameters of spontaneously hypertensive rats.
    Kilic-Erkek O; Kilic-Toprak E; Kucukatay V; Bor-Kucukatay M
    Biorheology; 2014; 51(6):355-67. PubMed ID: 25467762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of haemoglobin mass on VO(2)max following normobaric 'live high-train low' in endurance-trained athletes.
    Robach P; Siebenmann C; Jacobs RA; Rasmussen P; Nordsborg N; Pesta D; Gnaiger E; Díaz V; Christ A; Fiedler J; Crivelli N; Secher NH; Pichon A; Maggiorini M; Lundby C
    Br J Sports Med; 2012 Sep; 46(11):822-7. PubMed ID: 22790809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.