These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23515112)

  • 41. Robustness and evolvability in genetic regulatory networks.
    Aldana M; Balleza E; Kauffman S; Resendiz O
    J Theor Biol; 2007 Apr; 245(3):433-48. PubMed ID: 17188715
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Robustness of the microtubule network self-organization in epithelia.
    Płochocka AZ; Ramirez Moreno M; Davie AM; Bulgakova NA; Chumakova L
    Elife; 2021 Feb; 10():. PubMed ID: 33522481
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proportionality between variances in gene expression induced by noise and mutation: consequence of evolutionary robustness.
    Kaneko K
    BMC Evol Biol; 2011 Jan; 11():27. PubMed ID: 21269459
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new measure of the robustness of biochemical networks.
    Chen BS; Wang YC; Wu WS; Li WH
    Bioinformatics; 2005 Jun; 21(11):2698-705. PubMed ID: 15731208
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Attraction basins as gauges of robustness against boundary conditions in biological complex systems.
    Demongeot J; Goles E; Morvan M; Noual M; Sené S
    PLoS One; 2010 Aug; 5(8):e11793. PubMed ID: 20700525
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamical and topological robustness of the mammalian cell cycle network: a reverse engineering approach.
    Ruz GA; Goles E; Montalva M; Fogel GB
    Biosystems; 2014 Jan; 115():23-32. PubMed ID: 24212100
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Eco-evolutionary dynamics in a disturbed world: implications for the maintenance of ecological networks.
    Loeuille N
    F1000Res; 2019; 8():. PubMed ID: 30728953
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Robust synchronization analysis in nonlinear stochastic cellular networks with time-varying delays, intracellular perturbations and intercellular noise.
    Chen PW; Chen BS
    Math Biosci; 2011 Aug; 232(2):116-34. PubMed ID: 21624379
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Innovation and robustness in complex regulatory gene networks.
    Ciliberti S; Martin OC; Wagner A
    Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13591-6. PubMed ID: 17690244
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of scale-free topology on the robustness and evolvability of genetic regulatory networks.
    Greenbury SF; Johnston IG; Smith MA; Doye JP; Louis AA
    J Theor Biol; 2010 Nov; 267(1):48-61. PubMed ID: 20696172
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Relationship among phenotypic plasticity, phenotypic fluctuations, robustness, and evolvability; Waddington's legacy revisited under the spirit of Einstein.
    Kaneko K
    J Biosci; 2009 Oct; 34(4):529-42. PubMed ID: 19920339
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inferring Drosophila gap gene regulatory network: a parameter sensitivity and perturbation analysis.
    Fomekong-Nanfack Y; Postma M; Kaandorp JA
    BMC Syst Biol; 2009 Sep; 3():94. PubMed ID: 19769791
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genotype networks, innovation, and robustness in sulfur metabolism.
    Matias Rodrigues JF; Wagner A
    BMC Syst Biol; 2011 Mar; 5():39. PubMed ID: 21385333
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanisms of mutational robustness in transcriptional regulation.
    Payne JL; Wagner A
    Front Genet; 2015; 6():322. PubMed ID: 26579194
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Model-Based Tool for the Analysis and Design of Gene Regulatory Networks.
    Ironi L; Lanzarone E
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1301-1314. PubMed ID: 28641269
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plasticity-led and mutation-led evolutions are different modes of the same developmental gene regulatory network.
    Ng ETH; Kinjo AR
    PeerJ; 2024; 12():e17102. PubMed ID: 38560475
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatial and Temporal Distribution of Bacterioplankton Molecular Ecological Networks in the Yuan River under Different Human Activity Intensity.
    Wu B; Wang P; Devlin AT; Chen L; Xia Y; Zhang H; Nie M; Ding M
    Microorganisms; 2021 Jul; 9(7):. PubMed ID: 34361967
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Algal Bloom Ties: Spreading Network Inference and Extreme Eco-Environmental Feedback.
    Wang H; Galbraith E; Convertino M
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190425
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantifying robustness of biochemical network models.
    Ma L; Iglesias PA
    BMC Bioinformatics; 2002 Dec; 3():38. PubMed ID: 12482327
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Robustness and dissipation of mitogen-activated protein kinases signal transduction network: underlying funneled landscape against stochastic fluctuations.
    Wang J; Zhang K; Wang E
    J Chem Phys; 2008 Oct; 129(13):135101. PubMed ID: 19045124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.