BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1120 related articles for article (PubMed ID: 23515177)

  • 1. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs.
    Liu H; Peng H; Wu Y; Zhang C; Cai Y; Xu G; Li Q; Chen X; Ji J; Zhang Y; OuYang HW
    Biomaterials; 2013 Jun; 34(18):4404-17. PubMed ID: 23515177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core-Shell Nanofibrous Membranes.
    Shalumon KT; Lai GJ; Chen CH; Chen JP
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21170-81. PubMed ID: 26355766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop.
    Liu H; Xu GW; Wang YF; Zhao HS; Xiong S; Wu Y; Heng BC; An CR; Zhu GH; Xie DH
    Biomaterials; 2015 May; 49():103-12. PubMed ID: 25725559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs.
    Peng H; Yin Z; Liu H; Chen X; Feng B; Yuan H; Su B; Ouyang H; Zhang Y
    Nanotechnology; 2012 Dec; 23(48):485102. PubMed ID: 23128604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osseointegrative properties of electrospun hydroxyapatite-containing nanofibrous chitosan scaffolds.
    Frohbergh ME; Katsman A; Mondrinos MJ; Stabler CT; Hankenson KD; Oristaglio JT; Lelkes PI
    Tissue Eng Part A; 2015 Mar; 21(5-6):970-81. PubMed ID: 25336062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different effects of nanophase and conventional hydroxyapatite thin films on attachment, proliferation and osteogenic differentiation of bone marrow derived mesenchymal stem cells.
    Zhou GS; Su ZY; Cai YR; Liu YK; Dai LC; Tang RK; Zhang M
    Biomed Mater Eng; 2007; 17(6):387-95. PubMed ID: 18032820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials.
    Duan S; Yang X; Mei F; Tang Y; Li X; Shi Y; Mao J; Zhang H; Cai Q
    J Biomed Mater Res A; 2015 Apr; 103(4):1424-35. PubMed ID: 25046153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds.
    Lai GJ; Shalumon KT; Chen JP
    Int J Nanomedicine; 2015; 10():567-84. PubMed ID: 25609962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-magnitude, high-frequency vibration promotes the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells cultured on a hydroxyapatite-coated surface: The direct role of Wnt/β-catenin signaling pathway activation.
    Chen B; Lin T; Yang X; Li Y; Xie D; Zheng W; Cui H; Deng W; Tan X
    Int J Mol Med; 2016 Nov; 38(5):1531-1540. PubMed ID: 28026000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-Hydroxyapatite Coating Promotes Porous Calcium Phosphate Ceramic-Induced Osteogenesis Via BMP/Smad Signaling Pathway.
    Wang J; Wang M; Chen F; Wei Y; Chen X; Zhou Y; Yang X; Zhu X; Tu C; Zhang X
    Int J Nanomedicine; 2019; 14():7987-8000. PubMed ID: 31632013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustained delivery of BMP-2 enhanced osteoblastic differentiation of BMSCs based on surface hydroxyapatite nanostructure in chitosan-HAp scaffold.
    Wang G; Qiu J; Zheng L; Ren N; Li J; Liu H; Miao J
    J Biomater Sci Polym Ed; 2014; 25(16):1813-27. PubMed ID: 25166866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications.
    Atak BH; Buyuk B; Huysal M; Isik S; Senel M; Metzger W; Cetin G
    Carbohydr Polym; 2017 May; 164():200-213. PubMed ID: 28325318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects.
    Zhao S; Wang H; Zhang Y; Huang W; Rahaman MN; Liu Z; Wang D; Zhang C
    Acta Biomater; 2015 Mar; 14():185-96. PubMed ID: 25534470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of three-dimensional porous chitosan-alginate scaffolds in rat calvarial defects for bone regeneration applications.
    Florczyk SJ; Leung M; Li Z; Huang JI; Hopper RA; Zhang M
    J Biomed Mater Res A; 2013 Oct; 101(10):2974-83. PubMed ID: 23737120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells.
    Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun nanofibrous matrix improves the regeneration of dense cortical bone.
    Cai YZ; Wang LL; Cai HX; Qi YY; Zou XH; Ouyang HW
    J Biomed Mater Res A; 2010 Oct; 95(1):49-57. PubMed ID: 20740600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold.
    Xie J; Peng C; Zhao Q; Wang X; Yuan H; Yang L; Li K; Lou X; Zhang Y
    Acta Biomater; 2016 Jan; 29():365-379. PubMed ID: 26441129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering.
    Tong S; Xu DP; Liu ZM; Du Y; Wang XK
    Int J Mol Med; 2016 Aug; 38(2):367-80. PubMed ID: 27352815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds.
    Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM
    Biomed Mater Eng; 2017; 28(6):671-685. PubMed ID: 29171970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.