BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 23515214)

  • 1. Continuously rethinking the definition of influenza for surveillance systems: a Dependent Bayesian Expert System.
    Alemi F; Atherton MJ; Pattie DC; Torii M
    Med Decis Making; 2013 Aug; 33(6):860-8. PubMed ID: 23515214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian processing of context-dependent text: reasons for appointments can improve detection of influenza.
    Alemi F; Torii M; Atherton MJ; Pattie DC; Cox KL
    Med Decis Making; 2012; 32(2):E1-9. PubMed ID: 22427368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of ESSENCE performance for influenza-like illness surveillance after an influenza outbreak--U.S. Air Force Academy, Colorado, 2009.
    Centers for Disease Control and Prevention (CDC)
    MMWR Morb Mortal Wkly Rep; 2011 Apr; 60(13):406-9. PubMed ID: 21471947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated influenza case detection for public health surveillance and clinical diagnosis using dynamic influenza prevalence method.
    Tsui F; Ye Y; Ruiz V; Cooper GF; Wagner MM
    J Public Health (Oxf); 2018 Dec; 40(4):878-885. PubMed ID: 29059331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving diagnostic recognition of primary hyperparathyroidism with machine learning.
    Somnay YR; Craven M; McCoy KL; Carty SE; Wang TS; Greenberg CC; Schneider DF
    Surgery; 2017 Apr; 161(4):1113-1121. PubMed ID: 27989606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian hierarchical Poisson models with a hidden Markov structure for the detection of influenza epidemic outbreaks.
    Conesa D; Martínez-Beneito MA; Amorós R; López-Quílez A
    Stat Methods Med Res; 2015 Apr; 24(2):206-23. PubMed ID: 21873301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting disease outbreaks using a combined Bayesian network and particle filter approach.
    Dawson P; Gailis R; Meehan A
    J Theor Biol; 2015 Apr; 370():171-83. PubMed ID: 25637764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of ICD-9-based case definitions for influenza-like illness surveillance.
    Eick-Cost AA; Hunt DJ
    MSMR; 2015 Sep; 22(9):2-7. PubMed ID: 26418885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated approach for fusion of environmental and human health data for disease surveillance.
    Burkom HS; Ramac-Thomas L; Babin S; Holtry R; Mnatsakanyan Z; Yund C
    Stat Med; 2011 Feb; 30(5):470-9. PubMed ID: 21290403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of the transferability of influenza case detection systems between two large healthcare systems.
    Ye Y; Wagner MM; Cooper GF; Ferraro JP; Su H; Gesteland PH; Haug PJ; Millett NE; Aronis JM; Nowalk AJ; Ruiz VM; López Pineda A; Shi L; Van Bree R; Ginter T; Tsui F
    PLoS One; 2017; 12(4):e0174970. PubMed ID: 28380048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical predictors for laboratory-confirmed influenza infections: exploring case definitions for influenza-like illness.
    Shah SC; Rumoro DP; Hallock MM; Trenholme GM; Gibbs GS; Silva JC; Waddell MJ
    Infect Control Hosp Epidemiol; 2015 Mar; 36(3):241-8. PubMed ID: 25695163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a pilot respiratory virus surveillance system linking electronic health record and diagnostic data.
    Al-Samarrai T; Wu W; Begier E; Lurio J; Tokarz R; Plagianos M; Calman N; Mostashari F; Briese T; Lipkin WI; Greene C
    J Public Health Manag Pract; 2013; 19(4):322-9. PubMed ID: 23449125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial cluster detection using dynamic programming.
    Sverchkov Y; Jiang X; Cooper GF
    BMC Med Inform Decis Mak; 2012 Mar; 12():22. PubMed ID: 22443103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of data sources for the surveillance of seasonal and pandemic influenza in Victoria.
    Clothier HJ; Atkin L; Turner J; Sundararajan V; Kelly HA
    Commun Dis Intell Q Rep; 2006; 30(3):345-9. PubMed ID: 17120488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidemic forecasts as a tool for public health: interpretation and (re)calibration.
    Moss R; Fielding JE; Franklin LJ; Stephens N; McVernon J; Dawson P; McCaw JM
    Aust N Z J Public Health; 2018 Feb; 42(1):69-76. PubMed ID: 29281169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian model choice for epidemic models with two levels of mixing.
    Knock ES; O'Neill PD
    Biostatistics; 2014 Jan; 15(1):46-59. PubMed ID: 23887980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian Markov switching models for the early detection of influenza epidemics.
    Martínez-Beneito MA; Conesa D; López-Quílez A; López-Maside A
    Stat Med; 2008 Sep; 27(22):4455-68. PubMed ID: 18618414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic daily ILI syndromic surveillance with a spatio-temporal Bayesian hierarchical model.
    Chan TC; King CC; Yen MY; Chiang PH; Huang CS; Hsiao CK
    PLoS One; 2010 Jul; 5(7):e11626. PubMed ID: 20661275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian information fusion networks for biosurveillance applications.
    Mnatsakanyan ZR; Burkom HS; Coberly JS; Lombardo JS
    J Am Med Inform Assoc; 2009; 16(6):855-63. PubMed ID: 19717809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic influenza monitoring: evaluation of body temperature to classify influenza-like illness in a syndromic surveillance system.
    Pattie DC; Atherton MJ; Cox KL
    Qual Manag Health Care; 2009; 18(2):91-102. PubMed ID: 19369852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.