BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 23515222)

  • 1. Self-organization of stabilized microtubules by both spindle and midzone mechanisms in Xenopus egg cytosol.
    Mitchison TJ; Nguyen P; Coughlin M; Groen AC
    Mol Biol Cell; 2013 May; 24(10):1559-73. PubMed ID: 23515222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. XMAP215, XKCM1, NuMA, and cytoplasmic dynein are required for the assembly and organization of the transient microtubule array during the maturation of Xenopus oocytes.
    Becker BE; Romney SJ; Gard DL
    Dev Biol; 2003 Sep; 261(2):488-505. PubMed ID: 14499655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KIF4 regulates midzone length during cytokinesis.
    Hu CK; Coughlin M; Field CM; Mitchison TJ
    Curr Biol; 2011 May; 21(10):815-24. PubMed ID: 21565503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lamin B counteracts the kinesin Eg5 to restrain spindle pole separation during spindle assembly.
    Goodman B; Channels W; Qiu M; Iglesias P; Yang G; Zheng Y
    J Biol Chem; 2010 Nov; 285(45):35238-44. PubMed ID: 20826821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity.
    Walczak CE; Vernos I; Mitchison TJ; Karsenti E; Heald R
    Curr Biol; 1998 Jul 30-Aug 13; 8(16):903-13. PubMed ID: 9707401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aurora B regulates spindle bipolarity in meiosis in vertebrate oocytes.
    Shao H; Ma C; Zhang X; Li R; Miller AL; Bement WM; Liu XJ
    Cell Cycle; 2012 Jul; 11(14):2672-80. PubMed ID: 22751439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational model predicts Xenopus meiotic spindle organization.
    Loughlin R; Heald R; Nédélec F
    J Cell Biol; 2010 Dec; 191(7):1239-49. PubMed ID: 21173114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spindle formation and dynamics of gamma-tubulin and nuclear mitotic apparatus protein distribution during meiosis in pig and mouse oocytes.
    Lee J; Miyano T; Moor RM
    Biol Reprod; 2000 May; 62(5):1184-92. PubMed ID: 10775165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poleward transport of Eg5 by dynein-dynactin in Xenopus laevis egg extract spindles.
    Uteng M; Hentrich C; Miura K; Bieling P; Surrey T
    J Cell Biol; 2008 Aug; 182(4):715-26. PubMed ID: 18710923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Branched microtubule nucleation and dynein transport organize RanGTP asters in
    Scrofani J; Ruhnow F; Chew WX; Normanno D; Nedelec F; Surrey T; Vernos I
    Mol Biol Cell; 2024 Jan; 35(1):ar12. PubMed ID: 37991893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TPX2 levels modulate meiotic spindle size and architecture in Xenopus egg extracts.
    Helmke KJ; Heald R
    J Cell Biol; 2014 Aug; 206(3):385-93. PubMed ID: 25070954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prc1E and Kif4A control microtubule organization within and between large
    Nguyen PA; Field CM; Mitchison TJ
    Mol Biol Cell; 2018 Feb; 29(3):304-316. PubMed ID: 29187577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation.
    Ohi R; Sapra T; Howard J; Mitchison TJ
    Mol Biol Cell; 2004 Jun; 15(6):2895-906. PubMed ID: 15064354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spindle fusion requires dynein-mediated sliding of oppositely oriented microtubules.
    Gatlin JC; Matov A; Groen AC; Needleman DJ; Maresca TJ; Danuser G; Mitchison TJ; Salmon ED
    Curr Biol; 2009 Feb; 19(4):287-96. PubMed ID: 19230671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual detection of chromosomes and microtubules by the chromosomal passenger complex drives spindle assembly.
    Tseng BS; Tan L; Kapoor TM; Funabiki H
    Dev Cell; 2010 Jun; 18(6):903-12. PubMed ID: 20627073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motile microtubule crosslinkers require distinct dynamic properties for correct functioning during spindle organization in Xenopus egg extract.
    Cahu J; Surrey T
    J Cell Sci; 2009 May; 122(Pt 9):1295-300. PubMed ID: 19351717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14.
    Hentrich C; Surrey T
    J Cell Biol; 2010 May; 189(3):465-80. PubMed ID: 20439998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of polymerization dynamics, opposed motors, and a tensile element in governing the length of Xenopus extract meiotic spindles.
    Mitchison TJ; Maddox P; Gaetz J; Groen A; Shirasu M; Desai A; Salmon ED; Kapoor TM
    Mol Biol Cell; 2005 Jun; 16(6):3064-76. PubMed ID: 15788560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization.
    Heald R; Tournebize R; Habermann A; Karsenti E; Hyman A
    J Cell Biol; 1997 Aug; 138(3):615-28. PubMed ID: 9245790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycogen-supplemented mitotic cytosol for analyzing Xenopus egg microtubule organization.
    Groen AC; Ngyuen PA; Field CM; Ishihara K; Mitchison TJ
    Methods Enzymol; 2014; 540():417-33. PubMed ID: 24630120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.