These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 23515246)

  • 41. Activity of ceftobiprole compared with those of other agents against Staphylococcus aureus strains with different resistotypes by time-kill analysis.
    Lin G; Appelbaum PC
    Diagn Microbiol Infect Dis; 2008 Feb; 60(2):233-5. PubMed ID: 17997257
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of biofilm on the in vitro activity of vancomycin alone and in combination with tigecycline and rifampicin against Staphylococcus aureus.
    Rose WE; Poppens PT
    J Antimicrob Chemother; 2009 Mar; 63(3):485-8. PubMed ID: 19109338
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of vancomycin, daptomycin, fosfomycin, tigecycline, and ceftriaxone on Staphylococcus epidermidis biofilms.
    Hajdu S; Lassnigg A; Graninger W; Hirschl AM; Presterl E
    J Orthop Res; 2009 Oct; 27(10):1361-5. PubMed ID: 19396814
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Real-Time Monitoring of Pharmacokinetics of Antibiotics in Biofilms with Raman-Tagged Hyperspectral Stimulated Raman Scattering Microscopy.
    Bae K; Zheng W; Ma Y; Huang Z
    Theranostics; 2019; 9(5):1348-1357. PubMed ID: 30867835
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intracellular activity of the peptide antibiotic NZ2114: studies with Staphylococcus aureus and human THP-1 monocytes, and comparison with daptomycin and vancomycin.
    Brinch KS; Tulkens PM; Van Bambeke F; Frimodt-Møller N; Høiby N; Kristensen HH
    J Antimicrob Chemother; 2010 Aug; 65(8):1720-4. PubMed ID: 20534628
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural and metabolic responses of Staphylococcus aureus biofilms to hyperosmotic and antibiotic stress.
    Kiamco MM; Mohamed A; Reardon PN; Marean-Reardon CL; Aframehr WM; Call DR; Beyenal H; Renslow RS
    Biotechnol Bioeng; 2018 Jun; 115(6):1594-1603. PubMed ID: 29460278
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effects of exposure at constant (1 h) or exponentially decreasing concentrations of quinupristin/dalfopristin on biofilms of Gram-positive bacteria.
    Gander S; Finch R
    J Antimicrob Chemother; 2000 Jul; 46(1):61-7. PubMed ID: 10882690
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vancomycin and maltodextrin affect structure and activity of Staphylococcus aureus biofilms.
    Kiamco MM; Atci E; Khan QF; Mohamed A; Renslow RS; Abu-Lail N; Fransson BA; Call DR; Beyenal H
    Biotechnol Bioeng; 2015 Dec; 112(12):2562-70. PubMed ID: 26084588
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of the effects of human β-defensin 3, vancomycin, and clindamycin on Staphylococcus aureus biofilm formation.
    Huang Q; Yu HJ; Liu GD; Huang XK; Zhang LY; Zhou YG; Chen JY; Lin F; Wang Y; Fei J
    Orthopedics; 2012 Jan; 35(1):e53-60. PubMed ID: 22229614
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Antimicrobial mechanism and the effect of atmospheric pressure N
    Wang J; Yu Z; Xu Z; Hu S; Li Y; Xue X; Cai Q; Zhou X; Shen J; Lan Y; Cheng C
    Biofouling; 2018 Sep; 34(8):935-949. PubMed ID: 30477343
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Decreased susceptibility of Streptococcus anginosus to vancomycin in a multispecies biofilm is due to increased thickness of the cell wall.
    Tavernier S; Sass A; De Bruyne M; Baeke F; De Rycke R; Crabbé A; Vandecandelaere I; Van Nieuwerburgh F; Coenye T
    J Antimicrob Chemother; 2018 Sep; 73(9):2323-2330. PubMed ID: 29901811
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bactericidal activity of ceftaroline against mature Staphylococcus aureus biofilms.
    Landini G; Riccobono E; Giani T; Arena F; Rossolini GM; Pallecchi L
    Int J Antimicrob Agents; 2015 May; 45(5):551-3. PubMed ID: 25661754
    [No Abstract]   [Full Text] [Related]  

  • 53. In vitro antimicrobial effects and mechanisms of direct current air-liquid discharge plasma on planktonic Staphylococcus aureus and Escherichia coli in liquids.
    Xu Z; Cheng C; Shen J; Lan Y; Hu S; Han W; Chu PK
    Bioelectrochemistry; 2018 Jun; 121():125-134. PubMed ID: 29413862
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nonthermal Plasma Induces the Viable-but-Nonculturable State in Staphylococcus aureus via Metabolic Suppression and the Oxidative Stress Response.
    Liao X; Liu D; Ding T
    Appl Environ Microbiol; 2020 Feb; 86(5):. PubMed ID: 31836577
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of dust on airborne Staphylococcus aureus' viability, culturability, inflammogenicity, and biofilm forming capacity.
    White JK; Nielsen JL; Larsen CM; Madsen AM
    Int J Hyg Environ Health; 2020 Sep; 230():113608. PubMed ID: 32891016
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Citric acid can force Staphylococcus aureus into viable but nonculturable state and its characteristics.
    Bai H; Zhao F; Li M; Qin L; Yu H; Lu L; Zhang T
    Int J Food Microbiol; 2019 Sep; 305():108254. PubMed ID: 31238194
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Viable but non-culturable E. coli induced by low level chlorination have higher persistence to antibiotics than their culturable counterparts.
    Lin H; Ye C; Chen S; Zhang S; Yu X
    Environ Pollut; 2017 Nov; 230():242-249. PubMed ID: 28662489
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Survival strategy of Cronobacter sakazakii against ampicillin pressure: Induction of the viable but nonculturable state.
    Zhang J; Wang L; Shi L; Chen X; Chen C; Hong Z; Cao Y; Zhao L
    Int J Food Microbiol; 2020 Dec; 334():108819. PubMed ID: 32818765
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The importance of the viable but non-culturable state in human bacterial pathogens.
    Li L; Mendis N; Trigui H; Oliver JD; Faucher SP
    Front Microbiol; 2014; 5():258. PubMed ID: 24917854
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bacterial dormancy: A subpopulation of viable but non-culturable cells demonstrates better fitness for revival.
    Wagley S; Morcrette H; Kovacs-Simon A; Yang ZR; Power A; Tennant RK; Love J; Murray N; Titball RW; Butler CS
    PLoS Pathog; 2021 Jan; 17(1):e1009194. PubMed ID: 33439894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.