BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23515371)

  • 1. Generation of novel functional metalloproteins via hybrids of cytochrome c and peroxidase.
    Ying T; Zhong F; Wang ZH; Xie J; Tan X; Huang ZX
    Protein Eng Des Sel; 2013 Jun; 26(6):401-7. PubMed ID: 23515371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A route to novel functional metalloproteins via hybrids of cytochrome P450 and cytochrome c.
    Ying T; Zhong F; Wang ZH; Li W; Tan X; Huang ZX
    Chembiochem; 2011 Mar; 12(5):707-10. PubMed ID: 21404414
    [No Abstract]   [Full Text] [Related]  

  • 3. Improvement of hydrogen peroxide stability of Pleurotus eryngii versatile ligninolytic peroxidase by rational protein engineering.
    Bao X; Huang X; Lu X; Li JJ
    Enzyme Microb Technol; 2014 Jan; 54():51-8. PubMed ID: 24267568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stabilization of iso-1-cytochrome c by redox-inspired protein engineering.
    Valderrama B; García-Arellano H; Giansanti S; Baratto MC; Pogni R; Vazquez-Duhalt R
    FASEB J; 2006 Jun; 20(8):1233-5. PubMed ID: 16720736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Tyr74 and Tyr177 as substrate oxidation sites in cationic cell wall-bound peroxidase from Populus alba L.
    Shigeto J; Itoh Y; Tsutsumi Y; Kondo R
    FEBS J; 2012 Jan; 279(2):348-57. PubMed ID: 22099451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of the heme active site to increase the peroxidase activity of thermophilic cytochrome P450: a rational approach.
    Behera RK; Goyal S; Mazumdar S
    J Inorg Biochem; 2010 Nov; 104(11):1185-94. PubMed ID: 20709408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of lignin peroxidase from the white-rot basidiomycete Trametes cervina: a novel fungal peroxidase.
    Miki Y; Ichinose H; Wariishi H
    FEMS Microbiol Lett; 2010 Mar; 304(1):39-46. PubMed ID: 20070371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical properties of cytochrome c nitrated by peroxynitrite.
    Jang B; Han S
    Biochimie; 2006 Jan; 88(1):53-8. PubMed ID: 16040185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of a functional metalloenzyme: introduction of a site for manganese binding and oxidation into a heme peroxidase.
    Wilcox SK; Putnam CD; Sastry M; Blankenship J; Chazin WJ; McRee DE; Goodin DB
    Biochemistry; 1998 Dec; 37(48):16853-62. PubMed ID: 9836578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of Single Thioether c-Type Cytochromes Provides Insight into Mechanisms Intrinsic to Holocytochrome c Synthase (HCCS).
    Babbitt SE; Hsu J; Mendez DL; Kranz RG
    Biochemistry; 2017 Jul; 56(26):3337-3346. PubMed ID: 28617588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based Engineering of a Plant-Fungal Hybrid Peroxidase for Enhanced Temperature and pH Tolerance.
    Kohler AC; Simmons BA; Sale KL
    Cell Chem Biol; 2018 Aug; 25(8):974-983.e3. PubMed ID: 29805035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the oxidative stability of a high redox potential fungal peroxidase by rational design.
    Sáez-Jiménez V; Acebes S; Guallar V; Martínez AT; Ruiz-Dueñas FJ
    PLoS One; 2015; 10(4):e0124750. PubMed ID: 25923713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Tyr residues on the protein surface of cationic cell-wall-peroxidase (CWPO-C) from poplar: potential oxidation sites for oxidative polymerization of lignin.
    Sasaki S; Nonaka D; Wariishi H; Tsutsumi Y; Kondo R
    Phytochemistry; 2008 Jan; 69(2):348-55. PubMed ID: 17910963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of proximal methionine residues in Leishmania major peroxidase.
    Yadav RK; Pal S; Dolai S; Adak S
    Arch Biochem Biophys; 2011 Nov; 515(1-2):21-7. PubMed ID: 21893024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering a horseradish peroxidase C stable to radical attacks by mutating multiple radical coupling sites.
    Kim SJ; Joo JC; Song BK; Yoo YJ; Kim YH
    Biotechnol Bioeng; 2015 Apr; 112(4):668-76. PubMed ID: 25335829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New and classic families of secreted fungal heme peroxidases.
    Hofrichter M; Ullrich R; Pecyna MJ; Liers C; Lundell T
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):871-97. PubMed ID: 20495915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The functional role of the key residues in the active site of peroxidases.
    Smulevich G
    Biochem Soc Trans; 1995 May; 23(2):240-4. PubMed ID: 7672260
    [No Abstract]   [Full Text] [Related]  

  • 18. Engineering functional artificial hybrid proteins between poplar peroxiredoxin II and glutaredoxin or thioredoxin.
    Rouhier N; Gama F; Wingsle G; Gelhaye E; Gans P; Jacquot JP
    Biochem Biophys Res Commun; 2006 Mar; 341(4):1300-8. PubMed ID: 16476584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and synthesis of de novo cytochromes c.
    Ishida M; Dohmae N; Shiro Y; Oku T; Iizuka T; Isogai Y
    Biochemistry; 2004 Aug; 43(30):9823-33. PubMed ID: 15274636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast cytochrome c is a sequence-specific DNA-binding protein.
    Bhatnagar A; Raghavendra PR; Kranthi BV; Rangarajan PN
    Biochem Biophys Res Commun; 2004 Sep; 321(4):900-4. PubMed ID: 15358111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.