BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23515525)

  • 1. Microscopy Hacks: development of various techniques to assist quantitative nanoanalysis and advanced electron microscopy.
    Watanabe M
    Microscopy (Oxf); 2013 Apr; 62(2):217-41. PubMed ID: 23515525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical spatial resolution of electron energy loss spectroscopy in aberration corrected scanning transmission electron microscopy.
    Shah AB; Ramasse QM; Wen JG; Bhattacharya A; Zuo JM
    Micron; 2011 Aug; 42(6):539-46. PubMed ID: 21376607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of lanthanum in liver cells by energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy and high-resolution transmission electron microscopy.
    Yang Z; Schryvers D; Roels F; D'Haese PC; De Broe ME
    J Microsc; 2006 Aug; 223(Pt 2):133-9. PubMed ID: 16911073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose-limited spectroscopic imaging of soft materials by low-loss EELS in the scanning transmission electron microscope.
    Yakovlev S; Libera M
    Micron; 2008 Aug; 39(6):734-40. PubMed ID: 18096395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elemental mapping by electron energy loss spectroscopy in biology.
    Aronova MA; Leapman RD
    Methods Mol Biol; 2013; 950():209-26. PubMed ID: 23086878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberration-corrected STEM for atomic-resolution imaging and analysis.
    Krivanek OL; Lovejoy TC; Dellby N
    J Microsc; 2015 Sep; 259(3):165-72. PubMed ID: 25939916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an environmental high-voltage electron microscope for reaction science.
    Tanaka N; Usukura J; Kusunoki M; Saito Y; Sasaki K; Tanji T; Muto S; Arai S
    Microscopy (Oxf); 2013 Feb; 62(1):205-15. PubMed ID: 23329854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of environmental particles by atomic force microscopy, scanning and transmission electron microscopy.
    Mavrocordatos D; Pronk W; Boiler M
    Water Sci Technol; 2004; 50(12):9-18. PubMed ID: 15685998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D elemental and structural analysis of biological specimens using electrons and ions.
    Scott K
    J Microsc; 2011 Apr; 242(1):86-93. PubMed ID: 21118236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Electron Microscopes in Nanotoxicity Assessment.
    Zhang J; He X; Tseng MT
    Methods Mol Biol; 2019; 1894():247-269. PubMed ID: 30547465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Information-theoretical feature selection using data obtained by scanning electron microscopy coupled with and energy dispersive X-ray spectrometer for the classification of glass traces.
    Ramos D; Zadora G
    Anal Chim Acta; 2011 Oct; 705(1-2):207-17. PubMed ID: 21962363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New developments in electron energy loss spectroscopy.
    Keast VJ; Bosman M
    Microsc Res Tech; 2007 Mar; 70(3):211-9. PubMed ID: 17279511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron microscopy of pharmaceutical systems.
    Klang V; Valenta C; Matsko NB
    Micron; 2013 Jan; 44():45-74. PubMed ID: 22921788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of micro- and nanocapsules for self-healing anti-corrosion coatings by high-resolution SEM with coupled transmission mode and EDX.
    Hodoroaba VD; Akcakayiran D; Grigoriev DO; Shchukin DG
    Analyst; 2014 Apr; 139(8):2004-10. PubMed ID: 24605359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron energy-loss spectroscopy as a tool for elemental analysis in biological specimens.
    Kapp N; Studer D; Gehr P; Geiser M
    Methods Mol Biol; 2007; 369():431-47. PubMed ID: 17656763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated scanning electron microscopy and x-ray microanalysis for in situ quantification of gadolinium deposits in skin.
    Thakral C; Abraham JL
    J Electron Microsc (Tokyo); 2007 Oct; 56(5):181-7. PubMed ID: 17951398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new quantitative method for gunshot residue analysis by ion beam analysis.
    Christopher ME; Warmenhoeven JW; Romolo FS; Donghi M; Webb RP; Jeynes C; Ward NI; Kirkby KJ; Bailey MJ
    Analyst; 2013 Aug; 138(16):4649-55. PubMed ID: 23775063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of high-resolution SEM/EDX systems equipped with transmission mode (TSEM) for imaging and measurement of size and size distribution of spherical nanoparticles.
    Hodoroaba VD; Motzkus C; Macé T; Vaslin-Reimann S
    Microsc Microanal; 2014 Apr; 20(2):602-12. PubMed ID: 24548518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing structures of nanomaterials using advanced electron microscopy methods, including aberration-corrected electron microscopy at the Angstrom scale.
    Gai PL; Yoshida K; Shute C; Jia X; Walsh M; Ward M; Dresselhaus MS; Weertman JR; Boyes ED
    Microsc Res Tech; 2011 Jul; 74(7):664-70. PubMed ID: 20954265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The principles of proton probe microanalysis in biology.
    Legge GJ; Cholewa M
    Scanning Microsc Suppl; 1994; 8():295-314; discussion 314-5. PubMed ID: 7638494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.