These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23515525)

  • 21. Advances in atomic resolution in situ environmental transmission electron microscopy and 1A aberration corrected in situ electron microscopy.
    Gai PL; Boyes ED
    Microsc Res Tech; 2009 Mar; 72(3):153-64. PubMed ID: 19140163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical mapping and quantification at the atomic scale by scanning transmission electron microscopy.
    Chu MW; Chen CH
    ACS Nano; 2013 Jun; 7(6):4700-7. PubMed ID: 23799301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seeing the atoms more clearly: STEM imaging from the Crewe era to today.
    Pennycook SJ
    Ultramicroscopy; 2012 Dec; 123():28-37. PubMed ID: 22727567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy.
    Muller DA; Kourkoutis LF; Murfitt M; Song JH; Hwang HY; Silcox J; Dellby N; Krivanek OL
    Science; 2008 Feb; 319(5866):1073-6. PubMed ID: 18292338
    [TBL] [Abstract][Full Text] [Related]  

  • 25. STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun.
    Sawada H; Tanishiro Y; Ohashi N; Tomita T; Hosokawa F; Kaneyama T; Kondo Y; Takayanagi K
    J Electron Microsc (Tokyo); 2009 Dec; 58(6):357-61. PubMed ID: 19546144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. X-ray spectromicroscopy in soil and environmental sciences.
    Thieme J; Sedlmair J; Gleber SC; Prietzel J; Coates J; Eusterhues K; Abbt-Braun G; Salome M
    J Synchrotron Radiat; 2010 Mar; 17(2):149-57. PubMed ID: 20157265
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The development and characteristics of a high-speed EELS mapping system for a dedicated STEM.
    Isakozawa S; Kaji K; Jarausch K; Terada S; Baba N
    J Electron Microsc (Tokyo); 2008 Apr; 57(2):41-5. PubMed ID: 18322296
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of scanning electron microscopy and energy dispersive X-ray spectroscopy in a case of occupational death.
    Aquila I; Boca S; Ricci P; Perozziello G; Candeloro P; Di Fabrizio E; Malara N; Gratteri S; Sacco MA; Francardi M
    Med Leg J; 2020 Sep; 88(3):163-168. PubMed ID: 32233908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a monochromator for aberration-corrected scanning transmission electron microscopy.
    Mukai M; Okunishi E; Ashino M; Omoto K; Fukuda T; Ikeda A; Somehara K; Kaneyama T; Saitoh T; Hirayama T; Ikuhara Y
    Microscopy (Oxf); 2015 Jun; 64(3):151-8. PubMed ID: 25654985
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope.
    Wu JS; Kim AM; Bleher R; Myers BD; Marvin RG; Inada H; Nakamura K; Zhang XF; Roth E; Li SY; Woodruff TK; O'Halloran TV; Dravid VP
    Ultramicroscopy; 2013 May; 128():24-31. PubMed ID: 23500508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An application of scanning electron microscopy combined with roentgen microanalysis (SEM-EDS) in canine urolithiasis.
    Kaliński K; Marycz K; Czogała J; Serwa E; Janeczek W
    J Electron Microsc (Tokyo); 2012 Feb; 61(1):47-55. PubMed ID: 22155717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SEM X-ray microanalysis of nanoparticles present in tissue or cultured cell thin sections.
    Zheng J; Nagashima K; Parmiter D; de la Cruz J; Patri AK
    Methods Mol Biol; 2011; 697():93-9. PubMed ID: 21116957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of electron energy-loss spectroscopy for nanoscience.
    Yuan J; Wang Z; Fu X; Xie L; Sun Y; Gao S; Jiang J; Hu X; Xu C
    Micron; 2008 Aug; 39(6):658-65. PubMed ID: 18166483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Field-emission scanning electron microscopy and energy-dispersive x-ray analysis to understand the role of tannin-based dyes in the degradation of historical wool textiles.
    Restivo A; Degano I; Ribechini E; Pérez-Arantegui J; Colombini MP
    Microsc Microanal; 2014 Oct; 20(5):1534-43. PubMed ID: 24983911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative dark-field mass analysis of ultrathin cryosections in the field-emission scanning transmission electron microscope.
    Andrews SB; Buchanan RA; Leapman RD
    Scanning Microsc Suppl; 1994; 8():13-23; discussion 23-4. PubMed ID: 7638482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural damage and chemical contaminants on reprocessed arthroscopic shaver blades.
    Kobayashi M; Nakagawa Y; Okamoto Y; Nakamura S; Nakamura T
    Am J Sports Med; 2009 Feb; 37(2):266-73. PubMed ID: 19118081
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scanning electron microanalysis and analytical challenges of mapping elements in urban atmospheric particles.
    Conny JM; Norris GA
    Environ Sci Technol; 2011 Sep; 45(17):7380-6. PubMed ID: 21774494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantifying the low-energy limit and spectral resolution in valence electron energy loss spectroscopy.
    Aguiar JA; Reed BW; Ramasse QM; Erni R; Browning ND
    Ultramicroscopy; 2013 Jan; 124():130-8. PubMed ID: 23154033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Progress and perspectives for atomic-resolution electron microscopy.
    Smith DJ
    Ultramicroscopy; 2008 Feb; 108(3):159-66. PubMed ID: 18054169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Relevance of scanning electron microscopy and x-ray fluorescence in biology and ultrastructural cellular pharmacology].
    Théret CG; Hanus M; Alliet J
    Arch Biol (Liege); 1980; 91(3-4):305-33. PubMed ID: 7235727
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.